Curriculum for the Master of Science (MSc) in Engineering (Control and Automation)

1\(^{st} – 4\(^{th}\) Semester

The Faculty of Engineering and Science
Aalborg University

September 2011
Preface:
Pursuant to Act 695 of June 22, 2011 on Universities (the University Act) with subsequent
changes, the following curriculum for the Master's programme is stipulated. The programme also
follows the Framework Provisions and the Examination Policies and Procedures for the Faculty of
Engineering and Science and The Faculty of Medicine.

Table of Contents
Table of Contents .. 1
Chapter 1: Legal Basis of the Curriculum, etc. ... 2
 1.1 Basis in ministerial orders ... 2
 1.2 Faculty affiliation ... 2
 1.3 Board of Studies affiliation .. 2
Chapter 2: Admission, Degree Designation, Programme Duration .. 2
and Competence Profile ... 2
 2.1 Admission.. 2
 2.2 Degree designation in Danish and English ... 2
 2.3 The programme’s specification in ECTS credits ... 2
 2.4 Competence profile on the diploma .. 2
Chapter 3: Content and Organisation of the Programme ... 4
 Descriptions of modules .. 6
Chapter 4: Entry into Force, Interim Provisions and Revision .. 28
Chapter 5: Other Provisions .. 28
 5.1 Rules concerning written work, including the Master’s thesis ... 28
 5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that
 are part of another programme at a university in Denmark or abroad 28
 5.3 Rules for examinations.. 28
 5.4 Exemption ... 28
 5.5 Completion of the Master’s programme .. 29
 5.6 Rules and requirements for the reading of texts ... 29
 5.7 Additional information.. 29
Chapter 1: Legal Basis of the Curriculum, etc.

1.1 Basis in ministerial orders
The Master’s programme is organized in accordance with the Ministry of Science, Technology and Innovation’s Ministerial Order no. 814 of June 29, 2010 on Bachelor’s and Master’s Programs at Universities (the Ministerial Order of the Study Programs) and Ministerial Order no. 857 of July 1, 2010 on University Examinations (the Examination Order) with subsequent changes. Further reference is made to Ministerial Order no. 233 of March 24, 2011 (the Admission Order) and Ministerial Order no. 250 of March 15, 2007 (the Grading Scale Order) with subsequent changes.

1.2 Faculty affiliation
The Master’s programme falls under the Faculty of Engineering and Science, Aalborg University.

1.3 Board of Studies affiliation
The Master’s programme falls under the Board of Studies for Electronics and IT.

Chapter 2: Admission, Degree Designation, Programme Duration and Competence Profile

2.1 Admission
Admission to the Master’s programme requires a Bachelor’s or Bachelor of Engineering degree in Electronic Engineering and IT, Computer Engineering or the like.

Students with another Bachelor's degree, upon application to the Board of Studies, will be admitted after a specific academic assessment if the applicant is deemed to have comparable educational prerequisites. The University can stipulate requirements concerning conducting additional exams prior to the start of study.

2.2 Degree designation in Danish and English
The Master’s programme entitles the graduate to the designation civilingeniør, cand.polyt. (candidatus/candidata polytechnices) i regulering og automation. The English designation is: Master of Science (MSc) in Engineering (Control and Automation).

2.3 The programme’s specification in ECTS credits
The Master’s programme is a 2-year, research-based, full-time study programme. The programme is set to 120 ECTS credits.

2.4 Competence profile on the diploma
The following competence profile will appear on the diploma:

- A graduate of the Master’s programme has competencies acquired through an educational programme that has taken place in a research environment.
- The graduate of the Master’s programme can perform highly qualified functions on the labor market on the basis of the educational programme. Moreover, the graduate has prerequisites for research (a Ph.D. programme). Compared to the Bachelor’s degree, the graduate of the Master’s programme has developed her/his academic knowledge and independence, so that the graduate can independently apply scientific theory and method in both an academic and occupational/professional context.
2.5 Competence profile of the programme:

The graduate of the Master’s programme:

Knowledge

- Has scientifically based knowledge about modeling and control methods for complex control systems
- Has an understanding of the concept of modern control
- Must understand analytical, numerical and experimental methods for analysis and design of complex control systems
- Has knowledge about distributed systems and data networks for control purposes
- Has knowledge in one or more subject areas that is based on the highest international research within the fields of control engineering

Skills

- Can analyze and apply modern control methods for multi input/multi output systems.
- Demonstrate insight in relevant theories, methods and techniques used for distribution, storage and processing of data in a distributed system
- Can apply data networks for control purposes
- Demonstrate insight in real-time, performance, safety and robustness aspects
- Can apply modeling methods for dynamic mechanical and thermal systems
- Can analyze specific control methods used for control of mechanical or thermal systems.
- Can select and apply advanced methods of control and estimation when applied to complex systems.
- Demonstrate comprehension of optimal and robust control theory
- Can apply appropriate methods of analysis for investigating control problems in industrial plants.
- Can communicate research-based knowledge and discuss professional and scientific problems with peers as well as non-specialists, using the correct terminology.

Competencies

- Can select and apply appropriate methods for solving a given problem within control and automation and evaluate the results regarding their accuracy and validity
- Can identify scientific problems within control and automation and select and apply proper scientific theories, methods and tools for their solution
- Can develop and advance new analyses and solutions within control and automation
- Can manage work-related situations that are complex and unpredictable, and which require new solutions
- Can initiate and implement discipline-specific as well as interdisciplinary cooperation and assume professional responsibility
- Can take responsibility for own professional development and specialization.
• Work according to a scientific method and present results in the form of a scientific article and at a seminar/scientific conference
• Formulate and explain scientific hypotheses and results achieved through scientific work
• Analyze results and draw conclusions on a scientific basis

Chapter 3: Content and Organization of the Programme

The programme is structured in modules and organised as a problem-based study. A module is a programme element or a group of programme elements, which aims to give students a set of professional skills within a fixed time frame specified in ECTS credits, and concluding with one or more examinations within specific exam periods. Examinations are defined in the curriculum.

The programme is based on a combination of academic, problem-oriented and interdisciplinary approaches and organised based on the following work and evaluation methods that combine skills and reflection:

• lectures
• classroom instruction
• project work
• workshops
• exercises (individually and in groups)
• teacher feedback
• reflection
• portfolio work
Overview of the programme:

All modules are assessed through individual grading according to the 7-point scale or Pass/Fail. All modules are assessed by external examination (external grading) or internal examination (internal grading or by assessment by the supervisor only).

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module</th>
<th>ECTS</th>
<th>P/C *)</th>
<th>Assessment</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>Networked control systems</td>
<td>15</td>
<td>P</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td>Select 1</td>
<td>PBL and networked control systems</td>
<td>15</td>
<td>P</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Stochastic processes</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Distributed real time systems</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Multivariable control</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>Multivariable control systems</td>
<td>15</td>
<td>P</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Modelling of mechanical and thermal systems</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>Select 1</td>
<td>Optimality and robustness</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Robot vision (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Fault detection, isolation and modelling (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>Control of complex systems</td>
<td>20</td>
<td>P</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Systems of systems/complex systems</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>Select 1</td>
<td>Machine Learning (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Non-linear control systems (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>Master’s thesis</td>
<td>30, possibly 50</td>
<td>P</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) P = Project - C = Course
Descriptions of modules

Networked Control Systems (Focus on Scientific Communication) (P)
Netværksbaserede kontrolsystemer (med fokus på videnskabelig kommunikation)

Prerequisites:
Knowledge and skills in control system analysis, design and implementation including classic and modern model based controllers. Basic skills in dynamic modeling and in solving problems involving information technology.

Competencies in Project-Oriented and Problem-Based Learning.

Objective:
Students who complete the module: have implemented a controller for a system with multiple inputs and outputs involving the use of a network. One aim is that the student should be able to design and analyze commonly used networks and protocols with focus on their real time properties. A second aim is that the student is able to design and implement classical solutions for multivariable control along with modern state space solutions including state feedback and feedback from observed states. Special attention is given to the implication of timing and timing variations in the network on the control behavior.

Students who complete the module:

Knowledge
- Must have knowledge about common control structures
- Must have knowledge about common communication standards, protocols and network topologies
- Must be able to understand network system models
- Must understand the scientific communication processes related to conference presentations and related to publishing in peer-reviewed scientific journals
- Must know how to organize a scientific publication

Skills
- Must be able to implement a control system using a selected network standard and analyze timing properties relevant for the control system behavior
- Must be able to design and implement classic and modern controllers for a multivariable system and analyze closed loop properties like pole placement, disturbance rejection and reference following.
- Can explain the process of and criteria for peer reviewed scientific communications,
- Can write a paper for a scientific conference/journal
- Can prepare and give an oral and poster presentation for a scientific conference

Competencies
- Must have competencies in analysis and design of control of systems in state space formulation including state feedback and observer design.
- Must have competencies in design and implementation of distributed real time systems and real time requirements for control systems.
- Are able to judge and prioritize the validity of various sources of scientific information.
- Apply internationally recognized principles for acknowledging and citing work of others properly
- Can formulate and explain scientific hypotheses and results achieved through scientific work
• Are able to analyze results and draw conclusions on a scientific basis

Type of instruction:
Students are organized in groups of up to six members working according to the POPBL concept at Aalborg University. Each group will be supervised by at least one staff member doing research within the main topic(s) addressed in the project.

On this semester the project has to be documented in the following forms (all in English):

- A scientific article
- An oral presentation
- A poster
- Edited worksheets, providing all relevant project details

For further information see the introduction to Chapter 3.

Exam format:
Individual oral examination based on written documentation including: a scientific article slides from the oral presentation at the student conference (SEMCON), a poster and edited worksheets.

Evaluation criteria:
As stated in the Framework Provisions
Problem Based Learning and Networked Control Systems (P)

Prerequisites:
Knowledge and skills in control system analysis, design and implementation including classic and modern model based controllers. Basic skills in dynamic modeling and in solving problems involving information technology.

Objective:
Students who complete the module: have implemented a controller for a system with multiple inputs and outputs involving the use of a network. One aim is that the student should be able to design and analyze commonly used networks and protocols with focus on their real time properties. A second aim is that the student is able to design and implement classical solutions for multivariable control along with modern state space solutions including state feedback and feedback from observed states. Special attention is given to the implication of timing and timing variations in the network on the control behavior

Students who complete the module:

Knowledge
- Must have knowledge about common control structures
- Must have knowledge about common communication standards, protocols and network topologies
- Must be able to understand network system models
- Has knowledge of the phases that a project will go through
- Understand various theories and methods applied in problem based learning and group organized project work.

Skills
- Must be able to implement a control system using a selected network standard and analyze timing properties relevant for the control system behavior
- Must be able to design and implement classic and modern controllers for a multivariable system and analyze closed loop properties like pole placement, disturbance rejection and reference following.
- Are able to plan and take part in a small group of students working on a problem based project
- Can reflect on experiences obtained through problem based learning and group project work
- Can communicate the result of the project work in an appropriate form
- Are able to demonstrate skills in project management.

Competencies
- Must have competencies in analysis and design of control of systems in state space formulation including state feedback and observer design.
- Must have competencies in design and implementation of distributed real time systems and real time requirements for control systems
- Can organize and contribute to a team based project work
- Has competencies in project work and problem based learning in a global/multicultural environment
- Can manage work and development situations that are complex, unpredictable and require new solutions.
• Can independently initiate and implement discipline-specific and interdisciplinary cooperation and assume professional responsibility.
• Can independently take responsibility for own professional development and specialization
• Can find, evaluate and reference literature within the professional field
• Apply internationally recognized principles for acknowledging and citing work of others properly

Type of instruction:
Project work

Exam format:
Individual oral examination based on a written report.

Evaluation criteria:
As stated in the Framework Provisions
Stochastic Processes (C)
Stokastiske processer

Prerequisites:
Solid knowledge in probability, statistics, linear algebra, Fourier theory, and programming

Objective:
Students who complete the module:

Knowledge
- Have knowledge about the theoretical framework in which stochastic processes are defined.
- Be able to understand the properties of the stochastic processes introduced in the course, such as white-sense stationary (WSS) processes, Auto Regressive Moving Average (ARMA) processes, Markov models, and Poisson point processes.
- Be able to understand how WSS process are transformed by linear time-invariant systems.
- Be able to understand the theoretical context around the introduced estimation and detection methods ((non-parametric and parametric) spectral estimation, Linear Minimum Mean Square Error (LMMSE) estimation, Wiener filter, Kalman filter, detection of signals, ARMA estimation, etc.)

Skills
- Be able to apply the stochastic processes taught in the course to model real random mechanisms occurring in engineering problems.
- Be able to simulate stochastic processes using a standard programming language.
- Be able to apply the taught estimation and detection methods to solve engineering problems dealing with random mechanisms.
- Be able to evaluate the performances of the introduced estimation and detection methods.

Competencies
- Have the appropriate “engineering” intuition of the basics concepts and results related to stochastic processes that allow – for a particular engineering problem involving randomness – to design an appropriate model, derive solutions, assess the performance of these solutions, and possibly modify the model, and all subsequent analysis steps, if necessary

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Distributed Real Time Systems (C)

Prerequisites:
Basics in network communication and protocols.

Objective:
Distributed real time systems as such gains more and more momentum in all kinds of systems ranging from distributed embedded systems to cloud based systems. The purpose is to enable the student to analyse and design complex networked systems with properties as ad-hoc network, real time, fieldbus based protocols, basic quality of service as well as protocols for obtaining consistency. The OSI model will be a given base for analysing and evaluation of different protocols.

Students who complete the module:

Knowledge
The students must have insight in:

- OSI modelling paradigm
- ad-hoc self-organising network methodologies and example protocols
- fieldbus technologies and concepts of communication
- global state protocols
- basic queuing theory
- replication of systems for redundancy concerns
- protocols for remote sensing system as for home automation
- quality of service as a design parameter
- safety as an issue
- application layer protocol design

Skills
The students must have understanding of …

- OSI seven layer stack
- Service models for field bus and their limitation
- utilizing consistency between automates in a distributed system
- describing a loose coupled system with basic traffic pattern modelling
- home automation and similar domain areas in perspective of communication and safety
- quality of service
- protocol design

Competencies
The students must be able to

- protocol design for domain areas like embedded industrial real time systems
- ad-hoc networking concepts
- Loose coupled systems design
- in vivo measurement of network traffic

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Multivariable Control (C)
Flervariable reguleringsystemer

Prerequisites:
Skills in analyses and design of classical Control and Automation 1st semester

Objective:
To expand qualifications in classic control and to introduce modern control methods based on state space description.

Students who complete the module:

Knowledge
- Design of controllers for MIMO systems
- Design of state space controllers for MIMO systems
- Control of large scale systems

Skills
- Feedback design methods
- Design methods for special control elements
- Multivariable control structures
- State space control
- Observers
- Control of unit operations: e.g. boiler control, evaporation control, distillation control, energy transport control, reactor control, heat exchanger control.
- Control of large scale systems e.g. sugar production, power production, cement production

Competencies
- Digital control methods
 - Design by emulation
 - Discrete design
- Advanced classic MIMO control system design
 - Top-down versus bottom-up control design
 - Classic linear control elements: feedback, feed forward, cascade, decoupling
 - Special control elements: ratio control, split range, mid ranging, large loop control, repetitive control
 - Non-linear elements: minimum-maximum, selectors, gain scheduling, limiters, variable structure
 - Basic control elements: level control, temperature control, enthalpy control, pressure control, flow control.
- Time delays
- Anti integrator windup
- State space control
 - Poles and zeros of state space models
 - State space transformations
 - Controllability
 - State feedback design
 - Observability
- Observer gain design
- Observer based control
- Separations theorem
- Integral state space control
- Zero assignment
- Reference input

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Multivariable Control Systems (P)

Flervariable reguleringssystemer

Prerequisites:
Qualifications equivalent to MSc in Control and Automation 1st semester

Objective:
Students who complete the module: must be able to analyze modern control methods for multi input/multi output systems and to apply modeling methods and control synthesis for mechanical or energy conversion systems.

Students who complete the module:

Knowledge
- Stability and performance limitations in robust control
- Additive and multiplicative model uncertainty
- Robust stability
- Robust performance
- Small gain theorem
- Dynamic programming
- Riccati equation
- Elimination of steady state errors in optimal control
- Use of observer in LQG control
- Stability properties of optimal controller
- Stability properties of finite horizon control
- Solving predictive control with constraints using quadratic programming
- Dealing with uncertain and nonlinear systems in model predictive control.
- Mass- and energy balances
- Fundamental laws of thermodynamics
- Models with lumped and distributed parameters
- Model structures for system identification: AR, MA, ARMA, ARMAX, Box-Jenkins
- System identification methods: Moment method, Least squares method, Prediction error method, Maximum likelihood method, Recursive and adaptive parameter estimation
- Lagrange and Hamiltonian mechanics
- Rotation parameters, rotation matrices, quaternion
- Model representations (differential equations, state space, transfer function, differential-algebraic equations, descriptor form)

Skills
- Formulation of optimal control problems with references and disturbances
- Soft real time implementation
- Formulation of the standard robustness problem
- Theory and solution to the standard robust problem
- Formulation of control problems using models of constraints, disturbances and references combined with a performance function (Model Predictive Control)
- Software tools for solving constrained optimization problems
• Should be able to formulate models of a basic energy conversion systems and mechanical systems.
• Should be able to apply system identification methods
• Should be able to adapt the model to a suitable representation

Competencies
- Must have competencies in modern control methods for multi input/multi output systems
- Must have competencies in advanced control methods e.g. optimal control, model predictive control or robust control
- To make a dynamic model of a complex system containing adequate information for making an advanced controller

Type of instruction:
Project work.

Exam format:
Project work

Evaluation criteria:
As stated in the Framework Provisions
Modeling of Mechanical and Thermal Systems (C)

Modellering af mekaniske og termiske systemer

Prerequisites:
Knowledge and skills in control system analysis, design and implementation including classic and modern model based controllers. Basic skills in dynamic modeling and in solving problems involving information technology.

Objective:
Students who complete the module:

Knowledge
- Mass- and energy balances
- Preservation of momentum
- Definition of control volumes, Reynolds theorem
- Empirical relations for heat transfer friction
- Properties for liquids and gasses
- Fundamental laws of thermodynamics
- Models with lumped parameters
- Models with distributed parameters
- Model structures for system identification: AR, MA, ARMA, ARMAX, Box-Jenkins
- System identification methods: Moment method, Least squares method, Prediction error method, Maximum likelihood method, Recursive and adaptive parameter estimation
- Lagrange and Hamiltonian mechanics
- Coordinate systems and coordinate transformation for mechanical systems.
- Rotation parameters, rotation matrices, quaternions
- Kinematics
- Satellite and Robot dynamics
- Model representations (differential equations, state space, transfer function, differential-algebraic equations, descriptor form)
- Model reduction
- Linearization
- Model properties (controllability, observability, stability)

Skills
- Should be able to formulate models of a basic energy conversion systems and mechanical systems.
- Should be able to apply system identification methods
- Should be able to adapt the model to a suitable representation.

Competencies
- Capable of modeling a system with sufficient information level, suitable for solving a given control problem

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination
Evaluation criteria:
As stated in the Framework Provisions
Optimality and Robustness (C)
Optimal og robust regulering

Prerequisites:
Knowledge and skills in control system analysis, design and implementation including state space controllers.

Objective:
The aim of this module is to obtain qualifications in formulation and solution of control problems where the objective can be formulated as an optimization problem in which the trajectories of inputs, state variables and outputs are included in an objective function and can be constrained. The formulation will include a model which describes the dynamic behavior of the physical plant with given control inputs and disturbances. Models describing disturbances and references can be included to describe predictive problems. A further aim is to provide methods to analyze robustness of closed loop stability and performance when discrepancy between the physical plant and the model is bounded by specified uncertainty bounds and to study dimensioning methods, which aim to ensure robustness of stability and performance given specified uncertainty bounds.

Students who complete the module:

Knowledge
- Must have an understanding of basic concepts within optimal control, such as linear models, quadratic performance, dynamic programming, Riccati equations etc.
- Must have an understanding of the use of observers to estimate states in a linear dynamical system
- Must have insight into the stability properties of optimal controllers
- Must have insight into the stability properties of finite horizon control, and how to ensure stability
- Must have knowledge about performance specifications that are not quadratic
- Must have knowledge of additive and multiplicative model uncertainty
- Must have insight into the small gain theorem and its applications in robust control
- Must have insight into robust stability and robust performance

Skills
- Must be able to formulate linear control problems using models of disturbances and references combined with a quadratic performance function and solve them using appropriate software tools, e.g. Matlab
- Must be able to introduce integral states in control laws to eliminate steady state errors
- Must be able to design observers while taking closed-loop stability into account
- Must be able to utilize quadratic programming to solve predictive control problems with constraints.
- Must be able to use software tools such as Matlab to solve constrained optimization problems
- Must be able to formulate the standard robustness problem as a two-input-two-output problem and solve it using appropriate methods
- Must be able to assess the limitations model uncertainty sets impose on the achievable performance for systems described by linear models
- Must be able to use singular value plots and the H infinity norm of appropriate transfer function to assess robustness
- Must be able to perform H infinity norm optimization as a method to tune controllers.
Competencies
- Must be able to formulate and solve optimal control problems with references and disturbances
- Must understand the implications of disturbances and uncertainties in the context of linear dynamical systems, and be able to address these via robust control design

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Robot Vision (C)

Prerequisites:
Basic knowledge in linear algebra and statistics.

Objective:
Students who complete the module will gain knowledge, skills and competences as follows:

Knowledge

- Must have gained an understanding of fundamental concepts related to robotics.
- Must have an understanding of how vision and other sensors can be integrated with a robot.
- Must have an understanding of relevant technologies enabling the design of intelligent machines (artificial intelligence).
- Must have an understanding of highly flexible and integrated automation technologies.
- Must have an understanding of the business potential of intelligent manufacturing.

Skills

- Must be able to use various technologies to provide manufacturing systems with intelligent capabilities (reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects).
- Must be able to model the direct and inverse kinematics of a robot.
- Must be able to design simple trajectory planners, including Cartesian and joint interpolators.
- Must be able to program an industrial robot to carry out various tasks.
- Must be able to integrate vision with an industrial robot.
- Must be able to integrate and implement intelligent machines into a small and limited manufacturing system.

Competencies

- Must have the foundation to participate in projects aiming at designing intelligent manufacturing systems which more or less autonomously can adapt to variations in its environment and, over time, improve its performance.

Type of instruction:
The form(s) of teaching will be determined and described in connection with the planning of the semester. The description will account for the form(s) of teaching and may be accompanied by an elaboration of the roles of the participants. The course/project theme is performed in either English or Danish dependent of the language skills of the participants.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions.
Fault Detection, Isolation and Modeling (C)
Fejldetektion, -isolation og -modellering

Prerequisites:
Basic probability theory, dynamical systems formulated in state space and frequency, stochastic processes

Objective:
Every real life system will at some point or another experience faults. Students who complete this course will be able to, in a systematic manner, to analyze dynamic systems as well as distributed, network coupled systems. For each of the two system types the student will be able to:

- List the different considered faults, how they propagate through the system and assess their severity and occurrence likelihood.
- Develop methods for estimating if a given fault is present or not.
- Develop fault tolerant strategies for ensuring the continuation of the system in the presence of faults.

Students who complete the module:

Knowledge
- The taxonomy of fault tolerant systems
- Simulation tools for testing and verification

Skills
- In analyzing a system for possible faults and modeling these
 - Failure Mode and Effect Analysis
 - Structural analysis
 - Faults in TCP/IP based Networks
- In evaluating the severity of different faults and prioritizing
 - By means of simulations
 - Stochastic models for components and their availability
- In designing detectors for selected faults
 - Structural analysis
 - Analytical Redundancy Relations
 - Passive fault detection
 - Unknown input observers
 - Parameter estimators
 - Parity space filters
 - Active fault detection
 - Design of perturbation signals
 - Neighbor discovery
 - Round-trip time
 - Heartbeats
 - Acknowledged transmissions
 - Decision ruling
 - Threshold based
- Stochastic based

- In designing strategies for handling faults
 - Passive fault tolerance
 - Robust controllers
 - Reliable message broadcasting
 - Multipath routing
 - Active fault tolerance
 - Control strategy change
 - Redundant systems with backup components

Competencies
- In designing fault tolerance strategies for a given system

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Control of Complex Systems (P)
Regulering af komplekse systemer

Prerequisites:
Competencies equivalent to MSc in Control and Automation 2nd semester

Objective:
Students who complete the module:

Knowledge
- Must have knowledge about modeling of electromechanical and thermal systems.
- Must be able to understand methods for control of complex systems

Skills
- Must be able to analyze methods of state observation, parameter estimation and sensor information fusion in systems
- Must be able apply methods of supervisory control, fault tolerant control or fault detection

Competencies
- Must be able to design and implement a control system for a complex system.

Type of instruction:
Project work.

Exam format:
Project work

Evaluation criteria:
As stated in the Framework Provisions
Complex Systems (C)
Komplekse systemer

Prerequisites:
Knowledge from the areas of systems and control theory, network theory, distributed systems and embedded systems.

Objective:
The students will be introduced to methodologies for design of a system of systems in terms of designing the properties of the individual systems as well as their interconnecting behavior, establishing the system of systems. A systematic approach to the design of network architectures and local behavior rules, which together constitute systems of systems that are optimal with respect to objectives formulated at a macroscopic level, will be presented.

Students who complete the module:

Knowledge
- The formalized concept of systems of systems
- A systematic approach to the design of network architectures and local behavior rules, which together constitute systems of systems that are optimal with respect to objectives formulated at a macroscopic level.

Skills
- To combine the areas of systems and control theory, network theory, distributed systems and embedded systems into design principles for systems of systems
- Design of the properties of the individual systems, as well as their interconnecting behavior, establishing the system of systems

Competencies
- Quantized control
- Control of spatially distributed systems
- Networked control systems with limited communication capacity

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Machine Learning (C)
Maskin læring

Prerequisites:
Basic knowledge in probability theory, statistics, and linear algebra.

Objective:
The course gives a comprehensive introduction to machine learning, which is a field concerned with learning from examples and has roots in computer science, statistics and pattern recognition. The objective is realized by presenting methods and tools proven valuable and by addressing specific application problems.

Students who complete the module:

Knowledge
- Must have knowledge about supervised learning methods including K-nearest neighbors, decision trees, linear discriminant analysis, support vector machines, and neural networks.
- Must have knowledge about unsupervised learning methods including K-means, Gaussian mixture model, hidden Markov model, EM algorithm, and principal component analysis.
- Must have knowledge about probabilistic graphical models, variational Bayesian methods, belief propagation, and mean-field approximation.
- Must have knowledge about Bayesian decision theory, bias and variance trade-off, and cross-validation.
- Must be able to understand reinforcement learning.

Skills
- Must be able to apply the taught methods to solve concrete engineering problems.
- Must be able to evaluate and compare the methods within a specific application problem.

Competencies
- Must have competencies in analyzing a given problem and identifying appropriate machine learning methods to the problem.
- Must have competencies in understanding the strengths and weaknesses of the methods.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Non-linear Control Systems (C)
Ikke-lineære kontrolsystemer

Prerequisites:
The prerequisites for the course are knowledge within state-space linear control. It is assumed that the participants are acquainted with the notions of stability, controllability, and observability for linear control systems.

Objective:
The course comprises an introduction to nonlinear control systems. It discusses the notions of stability such as stability in Lyapunov sense, asymptotic, and exponential stability. It puts forward tests for checking if a system is stable based on behaviour of a so-called Lyapunov function. The focus in the course is on geometric methods: observability and controllability tests based on Lie algebras, and feedback linearization. Feedback linearization is a pure geometrical method that helps to find a certain map, which translates a nonlinear system into a linear one. The course introduces nonlinear techniques within observer design and sensor fusion as an extended Kalman filter, an unscented Kalman filter, and particle filters. Last but not least, the elements of hybrid control will be introduced; herein, the notion of a hybrid automaton, bisimulation, formal verification of control and hybrid systems, stability and control of switched systems.

Students who complete the module:

Knowledge
- Input-output stability
- Stabilizability
- Observability
- Formal verification of control and hybrid systems
- Particle filtering

Skills
- The invariance principle
- The unscented Kalman filter
- Kalman filters as parameter estimators
- Stability of switched systems
- Online estimation techniques to a given system
- Understand and analyze systems with multiple sensors for the purpose of fusing sensor information to control-relevant information

Competencies
- Lyapunov stability
- Backstepping
- Controllability
- Feedback linearization
- Linear Kalman Filters and their limitations
- The extended Kalman filter
- The influence of (coloured) sensor and model noise on the filter estimate.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Prerequisites:
Passed three previous semester or alike

Objective:
Students who complete the module:

Knowledge
- have knowledge, at the highest international level of research, of at least one of the core fields of the education
- have comprehension of implications of research (research ethics)

Skills
- are able to reflect on a scientific basis on their knowledge,
- can argue for the relevance of the chosen problem to the education including specifically account for the core of the problem and the technical connections in which it appears
- can account for possible methods to solve the problem statements of the project, describe and assess the applicability of the chosen method including account for the chosen delimitation and the way these will influence on the results of the product
- can analyze and describe the chosen problem applying relevant theories, methods and experimental data
- are able to describe the relevant theories and methods in a way that highlights the characteristics and hereby document knowledge of the applied theories, methods, possibilities and delimitations within the relevant problem area
- have the ability to analyze and assess experimental data, including the effect the assessment method has on the validity of the results.

Competencies
- are able to communicate scientific problems in writing and orally to specialist and non-specialist.
- are able to control situations that are complex, unpredictable and which require new solutions,
- are able to independently initiate and to perform collaboration within the discipline and interdisciplinary as well, and to take professional responsibility,
- are able to independently take responsibility for his or her own professional development and specialization.

If the project is carried out as a long master's thesis the learning objectives include those defined for the 3rd semester of the education.

Type of instruction:
As described in the introduction to Chapter 3.

Problem based project oriented project work individual or in groups of 2-3 persons

Exam format:
Individual oral examination based on a written report

Evaluation criteria:
As stated in the Framework Provisions
Chapter 4: Entry into Force, Interim Provisions and Revision

The curriculum is approved by the Dean of the Faculty of Engineering and Science.

Students who wish to complete their studies under the previous curriculum from 2008 must conclude their education by the summer examination period 2012 at the latest, since examinations under the previous curriculum are not offered after this time.

In accordance with the Framework Provisions and the Handbook on Quality Management for the Faculty of Engineering and Science and The Faculty of Medicine at Aalborg University, the curriculum must be revised no later than 5 years after its entry into force.

Chapter 5: Other Provisions

5.1 Rules concerning written work, including the Master's thesis
In the assessment of all written work, regardless of the language it is written in, weight is also given to the student's spelling and formulation ability, in addition to the academic content. Orthographic and grammatical correctness as well as stylistic proficiency are taken as a basis for the evaluation of language performance. Language performance must always be included as an independent dimension of the total evaluation. However, no examination can be assessed as ‘Pass’ on the basis of good language performance alone; similarly, an examination normally cannot be assessed as ‘Fail’ on the basis of poor language performance alone. The Board of Studies can grant exemption from this in special cases (e.g., dyslexia or a native language other than Danish).

The Master’s thesis must include an English summary.¹ If the project is written in English, the summary must be in Danish.² The summary must be at least 1 page and not more than 2 pages. The summary is included in the evaluation of the project as a whole.

5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another programme at a university in Denmark or abroad
In the individual case, the Board of Studies can approve successfully completed (passed) programme elements from other Master’s programmes in lieu of programme elements in this programme (credit transfer). The Board of Studies can also approve successfully completed (passed) programme elements from another Danish programme or a programme outside of Denmark at the same level in lieu of programme elements within this curriculum. Decisions on credit transfer are made by the Board of Studies based on an academic assessment. See the Framework Provisions for the rules on credit transfer.

5.3 Rules for examinations
The rules for examinations are stated in the Examination Policies and Procedures published by the Faculty of Engineering and Science on their website.

5.4 Exemption
In exceptional circumstances, the Board of Studies study can grant exemption from those parts of the curriculum that are not stipulated by law or ministerial order. Exemption regarding an examination applies to the immediate examination.

¹ Or another foreign language (upon approval from the Board of Studies.
² The Board of Studies can grant exemption from this.
5.5 Completion of the Master’s programme
The Master’s programme must be completed no later than four years after it was begun.

5.6 Rules and requirements for the reading of texts
It is assumed that the student can read academic texts in his or her native language as well as in English and use reference works etc. in other European languages.

5.7 Additional information
The current version of the curriculum is published on the Board of Studies’ website, including more detailed information about the programme, including exams.