Curriculum for the Master’s Programme in Engineering Psychology

Aalborg University 2012
Preface:
Pursuant to Act 695 of June 22, 2011 on Universities (the University Act) with subsequent changes, the following curriculum for the Master's programme in Engineering Psychology is stipulated. The programme also follows the Framework Provisions and the Examination Policies and Procedures for the Faculty of Engineering and Science and The Faculty of Medicine.

Table of Contents

Chapter 1: Legal Basis of the Curriculum, etc. ... 2
 1.1 Basis in ministerial orders ... 2
 1.2 Faculty affiliation ... 2
 1.3 Board of Studies affiliation .. 2
Chapter 2: Admission, Degree Designation, Programme Duration .. 2
 2.1 Admission .. 2
 2.2 Degree designation in Danish and English ... 2
 2.3 The programme’s specification in ECTS ... 2
 2.4 Competence profile on the diploma .. 2
Chapter 3: Content and Organization of the Programme ... 4
Chapter 4: Entry into Force, Interim Provisions and Revision .. 19
Chapter 5: Other Provisions .. 19
 5.1 Rules concerning written work, including the Master’s thesis ... 19
 5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another programme at a university in Denmark or abroad ... 19
 5.3 Rules for examinations .. 19
 5.4 Exemption ... 19
 5.5 Completion of the Master’s programme .. 20
 5.6 Rules and requirements for the reading of texts ... 20
 5.7 Additional information.. 20
Chapter 1: Legal Basis of the Curriculum, etc.

1.1 Basis in ministerial orders
The Master’s programme in Engineering Psychology is organised in accordance with the Ministry of Science, Technology and Innovation’s Ministerial Order no. 814 of June 29, 2010 on Bachelor’s and Master’s Programmes at Universities (the Ministerial Order of the Study Programmes) and Ministerial Order no. 857 of July 1, 2010 on University Examinations (the Examination Order) with subsequent changes. Further reference is made to Ministerial Order no. 213 of February 21, 2012 (the Admission Order) and Ministerial Order no. 250 of March 15, 2007 (the Grading Scale Order) with subsequent changes.

1.2 Faculty affiliation
The Master’s programme falls under the Faculty of Engineering and Science, Aalborg University.

1.3 Board of Studies affiliation
The Master’s programme falls under the Board of Studies for Electronics and IT.

Chapter 2: Admission, Degree Designation, Programme Duration and Competence Profile

2.1 Admission
Admission to the Master’s programme in Engineering Psychology requires a Bachelor’s degree in Engineering Psychology or the like.

Students with another Bachelor's degree, upon application to the Board of Studies, will be admitted after a specific academic assessment if the applicant is deemed to have comparable educational prerequisites. The University can stipulate requirements concerning conducting additional exams prior to the start of study.

2.2 Degree designation in Danish and English
The Master’s programme entitles the graduate to the designation civilingeniør, cand.polyt. (candidatus/candidata polytechnices) i produkt- og designpsykologi. The English designation is: Master of Science (MSc) in Engineering (Engineering Psychology).

2.3 The programmes specification in ECTS
The Master’s programme is a 2-year, research-based, full-time study programme. The programme is set to 120 ECTS credits.

2.4 Competence profile on the diploma
The following competence profile will appear on the diploma:

A graduate of the Master’s programme has competencies acquired through an educational programme that has taken place in a research environment.

The graduate of the Master’s programme can perform highly qualified functions on the labor market on the basis of the educational programme. Moreover, the graduate has prerequisites for research (a Ph.D. programme). Compared to the Bachelor’s degree, the graduate of the Master’s programme has developed her/his academic knowledge and independence, so that the graduate can independently apply scientific theory and method in both an academic and occupational/professional context.
2.5 Competence profile of the programme:

The graduate of the Master’s programme:

Knowledge
- Has a broad knowledge of theories, methods and practices associated with the professions of engineering.
- Has knowledge of theories and methods within psychology.
- Has knowledge in selected areas, that is based on the highest international research in a subject area.
- Can understand and, on a scientific basis, reflect upon knowledge and identify scientific problems.

Skills
- Excels in scientific methods, tools and general skills related to employment within engineering psychology.
- Is on a scientific basis able to apply theories, methods, tools and skills associated with employment within the fields of engineering psychology.
- Can on a scientific basis advance new theories and methods.
- Is able to assess theoretical and practical problems and to select and motivate relevant solutions on the basis of scientific method.
- Can communicate research-based knowledge and discuss professional and scientific problems with both peers and non-specialists.

Competencies
- Can manage work and development situations that are complex, unpredictable and require new solutions.
- Can in a professional and independent manner participate in professional and interdisciplinary cooperation in the fields of engineering, design and psychology.
- Can independently initiate and implement discipline-specific and interdisciplinary cooperation and assume professional responsibility.
- Can independently take responsibility for own professional development and specialisation.
- Possesses high-level professional competencies in the intersection between the disciplines of, engineering, design and psychology.
Chapter 3: Content and Organization of the Programme

The programme is structured in modules and organised as a problem-based study. A module is a programme element or a group of programme elements, which aims to give students a set of professional skills within a fixed time frame specified in ECTS credits, and concluding with one or more examinations within specific exam periods. Examinations are defined in the curriculum.

The programme is based on a combination of academic, problem-oriented and interdisciplinary approaches and organised based on the following work and evaluation methods that combine skills and reflection:

- lectures
- classroom instruction
- project work
- workshops
- exercises (individually and in groups)
- teacher feedback
- reflection
- portfolio work
Overview of the programme:

All modules are assessed through individual grading according to the 7-point scale or Pass/Fail. All modules are assessed by external examination (external grading) or internal examination (internal grading).

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module</th>
<th>ECTS</th>
<th>P/C (*)</th>
<th>Assessment</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Investigation of Subjective Experiences</td>
<td>15</td>
<td>P</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Advanced Cognitive Psychology</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Applied Experimental Psychology and Psycho-physics</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Computer Graphics Programming (elective)</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Machine Learning (elective)</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td>Select 1</td>
<td>Prototyping and Fabrication Techniques (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>User Experience Design for Multi-modal Interaction (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>2.</td>
<td>Interaction</td>
<td>15</td>
<td>P</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Applied Cognitive Psychology and Experimental Social Psychology</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Elective **)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>Select 1</td>
<td>Image Processing and Computer Vision (elective)</td>
<td>5</td>
<td>C</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Human Sound Perception and Audio Engineering (elective)</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>3.</td>
<td>Applied Engineering Psychology</td>
<td>30</td>
<td>P</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td>4.</td>
<td>Master’s Thesis</td>
<td>30, possible 60</td>
<td>P</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) P = Project - C = Course

**) Elective courses may include courses offered by the Study Board for Electronics and IT, by other study boards at Aalborg University, or by other Danish or foreign universities. The list of approved elective courses is maintained by the Study Board for Electronics and IT, see appendix A. Students, who wish to follow courses not included in the list of approved elective courses, must apply in writing for approval to the Study Board for Electronics and IT.
Description of modules

Investigation of Subjective Experiences (P)
Undersøgelser af subjektive indtryk

Prerequisites:
None

Purpose:
The project unit will support students in achieving deeper knowledge and skills in cognitive psychology of perception and use this knowledge to concrete problems.

Objective:
Students who complete the module:

Knowledge
- Understand methods to measure and transform subjective impression.
- Understand the perceptual and cognitive problems and use these in the project.

Skills
- Could use methods to measure and transform subjective impression.
- Could communicate scientific work in the form of a scientific paper and poster in English.

Competencies
Can synthesize the above information through the design, execution and statistical analysis of user experiments and/or psychophysical experiments.

Can
- Design and prototype manufacture a product that enhances the interaction between users and the technical system by incorporating advanced knowledge of perception, cognition and/or emotion psychological aspects gained through the design, execution and evaluation of one or more usability test, where the interaction between users and technical systems are analysed.

or

- Clarify the human perceptual or cognitive performance in one or more modalities and report this for basic scientific use or in relation to specific applications.

Type of instruction:
The project is documented by:
- A scientific paper, written in English
- A poster, also in English
- Edited worksheets documenting the various project details

Exam format:
Individual oral examination based on the project documentation

Evaluation criteria:
As stated in the Framework Provisions
Advanced Cognitive Psychology (C)
Udvidet kognitionspsykologi

Prerequisites:
Have an understanding of cognitive psychology at a basic level, or have a basic understanding of the psychological issues addressed in this course (perception, memory, motivation and emotion).

As a guideline should the basic level of understanding be equivalent to the level provided in the course “General and Cognitive psychology” (Almen- og kognitionspsykologi), on the 3rd semester BSc of Engineering Psychology (see curriculum for Engineering Psychology, 1st to 6th semester, bachelor).

Purpose:
The course aims to support the study of personal experience in relation to design of user interfaces through personal experiences conscious expression and function. Experience is here defined narrowly as perception, memory, emotions, thinking, self and motivation.

Objective:
Students who complete the module:

Knowledge
- Have elaborated understanding of cognitive approaches, concepts and methods
 - This knowledge should be, but not necessarily limited to:
 - Knowledge of perception
 - Knowledge about memory, recollections and Self
 - Knowledge of motivation and emotion psychology
 - Knowledge of basic themes, and classic and modern theories
 - Knowledge of empirical studies of particular relevance for the field

Skills
- Can apply this knowledge to relate constructively to theory and empirical.
- Can apply this knowledge to explore concrete everyday phenomena.
- Can apply this knowledge in the design of user interfaces.

Competencies
- Can relate to different ethical theory approaches cognitive psychology.
- Can deal independently and critically to theoretical and practical approaches.
- Can apply the acquired knowledge in practical and relevant contexts.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Applied Experimental Psychology and Psycho-physics

Anvendt eksperimentalpsykologi og psykofysik

Prerequisites:
Basic statistics and probability theory

Objective:
Students who complete the module:

Knowledge
Must have knowledge of the psychophysical methods that can be used to measure human perception, cognition, and performance, including:
- Threshold and comparison methods
- Quantitative methods for measuring psychophysical responses including, nominal, ordinal, interval and ratio scales.
- Transformation of data to relevant scales. Normalization and standardization.
- Comparative and non-comparative scaling: paired comparison and semantic differential techniques.
- Probabilistic choice models for paired comparison (BTL), and the concept of transitivity.
- Descriptive analysis, including selection and use of censor panels for scaling experiments, word elicitation, selection, scaling and analysis.
- Practical design of scales.
- Design of scaling experiments.
- Factor analysis.

Skills
The students must be able to:
- Carry out measurement and scaling of psychophysical responses.
- Use statistical software for analysis of the results.

Competencies
- Can choose the appropriate psychophysical method for a given problem.
- Have experience carrying out experiments using appropriate methods.
- Can analyse the results from experiments using appropriate statistical methods.

Type of instruction:
Lectures followed by exercises and/or lab-work.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Framework Provisions
Computer Graphics Programming (C)
Computer grafikprogrammering

Prerequisites:
Basic knowledge in linear algebra.

Purpose:
The course provides an introduction to real-time computer graphics concepts and techniques. The course focuses on programmable functionalities as offered by graphics APIs, supplemented with a presentation of the relevant underlying theories. The course also introduces the concepts of Virtual Reality and Augmented Reality, and how computer graphics is used in the context of these application areas.

Students who complete the module:

Knowledge
- Can describe the programmable graphics rendering pipeline as exposed for example by OpenGL.
- Can explain relevant mathematical transformations, including rotations, translations and projections in terms of matrix operations in homogeneous coordinates.
- Can explain real-time local illumination models, in particular the Phong reflection model, including the use of linearly interpolated attributes (colors and surface normals.)
- Can explain rasterization techniques, including texture mapping (diffuse reflection maps, gloss maps, environment/reflection maps), framebuffer operations (blending, stencil tests, depth tests), and anti-aliasing techniques (super-sampling, mip-map texture filtering).
- Can describe interpolation with Bezier and Hermite curves.
- Can describe the concepts of Virtual Reality and Augmented Reality, including relevant display technologies.
- Can discuss central issues relating to Virtual and Augmented Reality, including tracking, interaction possibilities, and degrees of realism.

Skills
- Can apply a graphics API such as OpenGL for procedurally generating and interactively controlling three-dimensional content.
- Can program simple vertex and fragment shaders (e.g. implementing per-vertex diffuse lighting and normal mapping).

Competencies
- Can learn further graphics APIs (such as Direct3D, OpenGL ES, SVG, X3D, webGL in HTML5), game engines and APIs for user interaction.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Machine Learning (C)

Machine learning

Prerequisites:
Basic knowledge in probability theory, statistics, and linear algebra.

Purpose:
The course gives a comprehensive introduction to machine learning, which is a field concerned with learning from examples and has roots in computer science, statistics and pattern recognition. The objective is realized by presenting methods and tools proven valuable and by addressing specific application problems.

Students who complete the module:

Knowledge
- Have knowledge about supervised learning methods including K-nearest neighbours, decision trees, linear discriminant analysis, support vector machines, and neural networks.
- Have knowledge about unsupervised learning methods including K-means, Gaussian mixture model, hidden Markov model, EM algorithm, and principal component analysis.
- Have knowledge about probabilistic graphical models, variational Bayesian methods, belief propagation, and mean-field approximation.
- Have knowledge about Bayesian decision theory, bias and variance trade-off, and cross-validation.
- Understand reinforcement learning.

Skills
- Can apply the taught methods to solve concrete engineering problems.
- Can evaluate and compare the methods within a specific application problem.

Competencies
- Can analyse a given problem and identifying appropriate machine learning methods to the problem.
- Can demonstrate understanding of the strengths and weaknesses of the methods.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
Prototyping and Fabrication Techniques (C)
Prototyping og fremstillingsteknikker

Purpose:
In order to be part of a leading design team, it is essential to be able to develop and communicate new interaction design concepts for the implementation and production of future electronic devices. The course rationale is that students need to have an understanding of physical interaction design processes, where ideas are formed, developed and tested in proof-of-concept models that can be demonstrated to others via video, poster presentations, and working prototypes. The focus is on understanding and applying design and development strategies needed to move from concept to working prototype, with the most recent tools and techniques for producing new forms, input/output from computers and embedded systems, and interactive systems and devices. The course incorporates advanced fabrication techniques; students should be able to build a prototype for any concept they can imagine. By incorporating computer-assisted industrial and electronic design techniques, knowledge about specific design tools and procedures is gained. In order to be able to apply this knowledge, a thorough understanding of the many underlying concepts is required.

Students who complete the module:

Knowledge
- Have knowledge about various approached to Concept Design methodologies.
- Have knowledge about standard methods and techniques for prototyping of new devices and systems.
- Understand the relationship between concept development and implementation/fabrication, specifically regarding research-based prototyping techniques

Skills
- Can apply concept design methods and prototyping techniques to real world scenarios involving fabrication of objects or systems with intended functionalities (e.g. responsive environments, interactive games, robots, musical interfaces, public installations, etc.)
Specific skills to be gained by the student may include many of the following:
 o Knowledge of concept development techniques
 o Knowledge of modelling and design tools
 o Knowledge of rapid prototyping techniques
 o Understanding advanced microcontroller programming
 o Understanding sensors, actuators, and displays
 o Understanding wired and wireless communication protocols
 o Understanding 3D input devices and haptics
 o Understanding iterative development (redesign/polish of product)
 o Understanding circuit design (schematic to printed circuit board)
 o Understanding Field Programmable Gate Arrays

Competencies
- Can analyse a problem, design a solution and translate it into a rapid prototyping design.
- Can analyse his/her solutions in order to compare and assess the potential of different concept design methods and prototyping techniques, iteratively making the proper design choices.
- Can synthesize results and concepts in a professional way equivalent to practices in both academic and industrial contexts.

Type of instruction:
The types on instruction for this course are decided in accordance with the current Framework Provisions and directions are decided and given by the Study Board for Media Technology.

Exam format:
Individual oral or written examination

Evaluation criteria:
As stated in the Framework Provisions
User Experience Design for Multi-modal Interaction (C)
Design af brugeroplevelsen for multi-modal interaktion

Prerequisites:
Basic knowledge in interaction design and usability.

Purpose:
This course trains students to research, analyse, prototype, and conceptualize design considering all system aspects including the social and cultural contexts of use. The course gives a comprehensive knowledge about user involvement in the design process going beyond traditional methods such as usability lab testing.

The objectives are realized by presenting methods and tools in a case based framework and through the student's active participation in workshops and assignments.

Students who complete the module:

Knowledge
- Have knowledge about system design methods including the social and cultural contexts of use.
- Have knowledge derived from sociological and ethnographic fields for user behavior research.
- Have knowledge about qualitative research methods involving end users in the field, such as interview techniques and analysis and experience sampling.
- Have knowledge about scenario-based design methods.
- Have knowledge about principles for multi modal interaction design.
- Have knowledge about methods for multi modal evaluation and fields studies.

Skills
- Can apply the taught methods to solve concrete design problems.
- Can evaluate and compare and apply the methods for a specific design problem.
- Can facilitate the design process involving users in real-life contexts.

Competencies
- Can decide how to choose the appropriate methods to suit different dimensions of a design problem at different stages in the process and the pitfalls of each approach.
- Understand the strengths and weakness of the methods.
- Can facilitate the design process involving users in contexts.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Framework Provisions
Interaction (P)
Interaktion

Prerequisites:
None

Purpose:
The project aims to create or explore an interaction. It could, for example be a man-machine interaction, a human-human interaction or human-machine-human interaction.

Objective:
Students who complete the module:

Knowledge
- Understand the fundamental aspects of the designed/examined interaction.
- Understand the psychological concepts that are either related to or possibly can describe the designed/examined interaction.
- Understand methods for the measurement of the designed/examined interaction influence on humans.

Skills
- Can design a prototype which is part of/or which can be used in connection with the designed/investigated interaction.
- Can measure on the designed/examined interaction with an aim of investigating the influence on humans.
- Can with the relevant tools analyse the measured data from this could account for the interaction's influence on humans.

Competencies
- Can synthesize the above information into a holistic understanding of the designed/examined the interaction and its influence on humans.

 Can
- Design and prototype manufacture a product using knowledge of applied cognitive psychology, to improve the human’s experience of a product. The improvement of the interaction could be measured through various user experience tests where a later statistical analysis could give a concrete estimate of the interaction’s influence on the user.

 or
- Investigate a given interaction, in order to provide design guidelines, suggestions for improvement, or a design concept that can increase or improve the interaction’s influence on the user.

Type of instruction:
Project work
- A report

 or
- A scientific paper, in conjunction with edited work sheets documenting the various details of the project.

Exam format:
Individual oral examination based on the project

Evaluation criteria:
As stated in the Framework Provisions
Prerequisites:
Engineering Psychology, Candidate 1st semester

Purpose:
The student will work with various psychological problems as they reflected in technological interactive systems.

Objective:
Students who complete the module:

Knowledge
- Have knowledge and understanding of perception-cognition and emotion psychological theories including: affordance, branding process, primer demotions, problem solving and creativity.
- Have an understanding of the complex interplay between psychological dimensions of human interaction with technical systems.
- Have knowledge of the individual’s dependence on its context.
- Have knowledge of the forces as leads, influences and motivates individuals and groups to choose, waive or alter attitudes, evaluations, preferences and behaviour.
- Have knowledge of relevant research methods, including the social psychological experiment, and qualitative research methods.

Skills
- Can identify and understand the psychological problems in technological interactive systems.
- Can identify and understand social psychological issues in technological interactive systems.

Competencies
- Can apply theoretical knowledge to analyse practical problems and synthesize solutions based on it.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Framework Provisions
Image Processing and Computer Vision (C)
Billedbehandling og computervision

Prerequisites:
Basic knowledge in linear algebra and statistics.

Purpose:
Cameras capture visual data from the surrounding world. Building systems which can automatically process such data requires computer vision methods. Students who complete the module will understand the nature of digital images and video and have an inside into relevant theories and methods within computer vision and an understanding of their applicability.

Students who complete the module:

Knowledge
- Have knowledge about the primary parameters of a camera system.
- Have knowledge about the representation and compression of digital images and video signal.
- Understand the general framework of image processing as well as the basic point and neighborhood operations, i.e., binarization, colour processing, BLOB analysis and filtering.
- Can explain the principles behind invariant feature point descriptors such as SIFT and Harris corners.
- Have knowledge of different motion analysis methods, such as background subtraction and optical flow.
- Understand the tracking frameworks such as the Kalman filter, mean-shift and the particle filter.
- Understand different shape analysis methods such as active-shape models, procrustes, Hungarian method.

Skills
- Can apply stereo vision to generate 3D data from two or more cameras. This implies projective geometry, camera calibration, epipolar geometry, correspondence and triangulation.
- Can apply advanced 2D segmentation methods such as Hough transform, compound morphology, and histogram-of-oriented histograms.
- Can demonstrate understanding of error propagation techniques as a tool for performance characterization of computer vision based solutions.

Competencies
- Can learn further computer vision methods and theories, and select an appropriate solution for a given problem.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Framework Provisions
Prerequisites:
Basic knowledge about electronic circuit theory one

Purpose:
Students who complete the module:

Knowledge
- Have knowledge about the anatomy and physiology of the human ear.
- Have knowledge about hearing diagnosis and disorders.
- Have knowledge about fundamental properties of human sound perception (e.g. Loudness, pitch, masking, spatial hearing and time / frequency resolution).
- Have basic knowledge in modern audio engineering including recording, reproduction and signal processing techniques (perceptive coding principles and formats, audio effects).
- Have knowledge about multi-channel recording, storage and reproduction of sound.
- Have knowledge about public address techniques.
- Have insight in digital audio interfaces and standards.
- Have insight in low noise audio design and interconnections.

Skills
- Can set up audio systems for recording or reproduction in an appropriate way to optimize the system and minimize noise.
- Can set up audio systems according to relevant standards.

Competencies
- Based on the acquired knowledge, the student should be able to critically evaluate systems and specifications within audio and acoustics with a basis in human sound perception.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Framework Provisions
Applied Engineering Psychology (P)
Anvendt produkt- og designpsykologi

Prerequisites:
None

Purpose:
The student obtains a deeper understanding of the use of product and design psychological methods through immersion in a selected area of concern.

Objective:
Students who complete the module:

Knowledge
- Have a deepened understanding of the use of product and design psychology methods

Skills
- Acquire knowledge on a chosen topic within the programmes core areas.
- Can analyse problems based on the product and design psychology.
- Can synthesize selected parts of a solution.

Competencies
- Can analyse a problem based in technical and psychological theories and methods
- Can prepare and document solutions – for example in the form of a prototype substantiated by experimental results.

Type of instruction:
The project unit must meet student's individual wishes to tailor their education. This may, for example, be done through internships, stays at other Danish or foreign universities. Alternatively, through a traditional project, supplemented by compound courses from existing courses in related educations.

Exam format:
Individual oral examination based on the project documentation.

Evaluation criteria:
As stated in the Framework Provisions
Prerequisites:
Passed semester 1-3.

Objective:
Students who complete the module:

Knowledge
- Have knowledge, at the highest international level of research, of at least one of the core fields of the education
- Have comprehension of implications of research (research ethics).

Skills
- Can reflect on a scientific basis on their knowledge.
- Can argue for the relevance of the chosen problem to the education including specifically account for the core of the problem and the technical connections in which it appears
- Can account for possible methods to solve the problem statements of the project, describe and assess the applicability of the chosen method including account for the chosen delimitation and the way these will influence on the results of the product
- Can analyse and describe the chosen problem applying relevant theories, methods and experimental data
- Can describe the relevant theories and methods in a way that highlights the characteristics and hereby document knowledge of the applied theories, methods, possibilities and delimitations within the relevant problem area
- Can analyse and assess experimental data, including the effect the assessment method has on the validity of the results.

Competencies
- Can communicate scientific problems in writing and orally to specialist and non-specialist.
- Can control situations that are complex, unpredictable and which require new solutions.
- Can independently initiate and to perform collaboration within the discipline and interdisciplinary as well, and to take professional responsibility.
- Can independently take responsibility for his or her own professional development and specialization.

If the project is carried out as a long master's thesis the learning objectives include those defined for the 3rd semester of the education.

Type of instruction:
As described in the introduction to Chapter 3.

Problem based project oriented project work individual or in groups of 2-3 persons

Exam format:
Individual oral examination based on a written report.

Evaluation criteria:
As stated in the Framework Provisions
Chapter 4: Entry into Force, Interim Provisions and Revision

The curriculum is approved by the Dean of the Faculty of Engineering and Science and enters into force as of 1 September 2012.

Students who wish to complete their studies under the previous curriculum from September 2011 must conclude their education by the summer examination period 2013 at the latest, since examinations under the previous curriculum are not offered after this time.

In accordance with the Framework Provisions for the Faculty of Engineering and Science and The Faculty of Medicine at Aalborg University, the curriculum must be revised no later than 5 years after its entry into force.

Chapter 5: Other Provisions

5.1 Rules concerning written work, including the Master’s thesis
In the assessment of all written work, regardless of the language it is written in, weight is also given to the student's spelling and formulation ability, in addition to the academic content. Orthographic and grammatical correctness as well as stylistic proficiency are taken as a basis for the evaluation of language performance. Language performance must always be included as an independent dimension of the total evaluation. However, no examination can be assessed as ‘Pass’ on the basis of good language performance alone; similarly, an examination normally cannot be assessed as ‘Fail’ on the basis of poor language performance alone.

The Board of Studies can grant exemption from this in special cases (e.g., dyslexia or a native language other than Danish).

The Master’s thesis must include an English summary.\(^1\) If the project is written in English, the summary must be in Danish.\(^2\) The summary must be at least 1 page and not more than 2 pages. The summary is included in the evaluation of the project as a whole.

5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another programme at a university in Denmark or abroad
In the individual case, the Board of Studies can approve successfully completed (passed) programme elements from other Master’s programmes in lieu of programme elements in this programme (credit transfer). The Board of Studies can also approve successfully completed (passed) programme elements from another Danish programme or a programme outside of Denmark at the same level in lieu of programme elements within this curriculum. Decisions on credit transfer are made by the Board of Studies based on an academic assessment. See the Framework Provisions for the rules on credit transfer.

5.3 Rules for examinations
The rules for examinations are stated in the Examination Policies and Procedures published by the Faculty of Engineering and Science on their website.

5.4 Exemption
In exceptional circumstances, the Board of Studies study can grant exemption from those parts of the curriculum that are not stipulated by law or ministerial order. Exemption regarding an examination applies to the immediate examination.

\(^1\) Or another foreign language (upon approval from the Board of Studies.

\(^2\) The Board of Studies can grant exemption from this.
5.5 Completion of the Master’s programme
The Master’s programme must be completed no later than four years after it was begun.

5.6 Rules and requirements for the reading of texts
It is assumed that the student can read academic texts in his or her native language as well as in English and use reference works etc. in other European languages.

5.7 Additional information
The current version of the curriculum is published on the Board of Studies’ website, including more detailed information about the programme, including exams.