Curriculum for the Master’s Programme in Wireless Communication Systems

Aalborg University
September 2017

Campus: Aalborg
Preface:
Pursuant to Act 261 of March 18, 2015 on Universities (the University Act) with subsequent changes, the following curriculum for the Master's programme in the Master's programme in Wireless Communication Systems is stipulated. The programme also follows the Joint Programme Regulations and the Examination Policies and Procedures for The Technical Faculty of IT and Design
Table of Contents

Table of Contents .. 2
Chapter 1: Legal Basis of the Curriculum, etc. .. 3
 1.1 Basis in ministerial orders .. 3
 1.2 Faculty affiliation .. 3
 1.3 Board of Studies affiliation ... 3
 1.4 External Examiners Corps ... 3
Chapter 2: Admission, Degree Designation, Programme Duration .. 3
 and Competence Profile .. 3
 2.1 Admission ... 3
 2.2 Degree designation in Danish and English ... 3
 2.3 The programme’s specification in ECTS credits .. 3
 2.4 Competence profile on the diploma ... 3
 2.5 Competence profile of the programme ... 4
Chapter 3: Content and Organisation of the Programme ... 5
 Descriptions of modules ... 7
Chapter 4: Entry into Force, Interim Provisions and Revision ... 24
Chapter 5: Other Provisions ... 24
 5.1 Rules concerning written work, including the Master’s thesis 24
 5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that
 are part of another programme at a university in Denmark or abroad 24
 5.3 Rules for examinations ... 24
 5.4 Exemption .. 24
 5.5 Rules and requirements for the reading of texts ... 24
 5.6 Additional information ... 25
Chapter 1: Legal Basis of the Curriculum, etc.

1.1 Basis in ministerial orders
The Master’s programme in Wireless Communication Systems is organised in accordance with the Ministry of Higher Education and Science’s Order no. 1061 of June 30, 2016 on Bachelor’s and Master’s Programmes at Universities (the Ministerial Order of the Study Programmes) and Ministerial Order no. 1062 of June 30, 2016 on University Examinations (the Examination Order). Further reference is made to Ministerial Order no. 258 of March 18, 2015 (the Admission Order) and Ministerial Order no. 114 of February 3, 2015 (the Grading Scale Order) with subsequent changes.

1.2 Faculty affiliation
The Master’s programme falls under the Technical Faculty of IT and Design, Aalborg University.

1.3 Board of Studies affiliation
The Master’s programme falls under the Board of Studies for Electronics and IT.

1.4 External Examiners Corps
The Master’s programme is associated with the external examiners for engineering educations: electro (In Danish: Censorkorps for Ingeniøruddannelsernes landssækkende censorkorps; elektro).

Chapter 2: Admission, Degree Designation, Programme Duration and Competence Profile

2.1 Admission
Applicants with a legal claim to admission (retnskrav):
Applicants with one of the following degrees are entitled to admission:

- Bachelor of Science in Electronics and IT, Aalborg University
- Bachelor of Science in Computer Engineering, Aalborg University

Applicants without legal claim to admission:
Students with another Bachelor's degree, upon application to the Board of Studies, will be admitted after a specific academic assessment if the applicant is deemed to have comparable educational prerequisites. The University can stipulate requirements concerning conducting additional exams prior to the start of study.

2.2 Degree designation in Danish and English
The Master’s programme entitles the graduate to the designation civilingeniør, cand.polyt. (candidatus/candidata polytechnices) i trådløse kommunikationssystemer. The English designation is: Master of Science (MSc) in Engineering (Wireless Communication Systems).

2.3 The programme’s specification in ECTS credits
The Master’s programme is a 2-year, research-based, full-time study programme. The programme is set to 120 ECTS credits.

2.4 Competence profile on the diploma
The following competence profile will appear on the diploma:

A graduate of the Master’s programme has competencies acquired through an educational programme that has taken place in a research environment.

The graduate of the Master’s programme can perform highly qualified functions on the labour market on the basis of the educational programme. Moreover, the graduate has prerequisites for research (a Ph.D. programme). Compared to the
Bachelor’s degree, the graduate of the Master’s programme has developed her/his academic knowledge and independence, so that the graduate can independently apply scientific theory and method in both an academic and occupational/professional context.

2.5 Competence profile of the programme:

The graduate of the Master’s programme:

Knowledge

- **Must know** fundamental theories and methods for analysis of a wireless communication system and its subcomponents,
- **Be able to understand** how to describe and account for a block level of a full wireless communication systems.
- **Must possess knowledge of** existing wireless communication systems, including their multiple access principle, basic terminology and overall architecture
- **Must know** some key features of international standards for one or several wireless communication systems
- **Must understand** channel allocation principles and radio resource management as it applies to wireless communication systems
- **Be able to understand** the terminology and methods used to characterize electromagnetic properties of antennas and propagation for wireless communication
- **Be able to understand** the terminology and parameters used to describe and characterize radio propagation mechanisms and channel response, including their impact to functionality and performance of multiple antenna systems

Skills

- **Must be able to choose between** a series of advanced analysis, simulation or experiments and model tests with relevance to wireless communication
- **Must be able to conduct** a study within a limited context and critically account for the observations and their implication
- **Must be able to plan** a wireless communication system for a given set of relevant system specifications and requirements
- **Must be able to evaluate and select** among different multi antenna or radio system techniques for channel stabilization and capacity enhancement
- **Must be able to characterize** propagation channel response as relevant for the wireless communications formats under investigation
- **Must be able to choose** between and apply different numerical methods and theories, for the solution of electromagnetic antenna and wave propagation behaviors in wireless communication settings
- **Must be able to communicate** orally and in writing on topics within the field of knowledge, and in particular on the application of relevant techniques, procedures and algorithms used in the solution of the aforementioned problems.

Competencies

- **Must be able to formulate and hypothesize** problems of relevance to the performance of practical wireless
communication systems and critically analyze these on a link or system level
- **Must be able to account** for the complex multi-agent interaction on a link or system level
- **Must be able to choose between and apply** relevant methods and theories for evaluation and design of specific subsystems or components of particular wireless communication systems under investigations
- **Must be able to perform** a rational selection of practical communication system solutions, including a judicious selection of techniques, procedures and algorithms within the field of knowledge

Chapter 3: Content and Organization of the Programme

The programme is structured in modules and organised as a problem-based study. A module is a programme element or a group of programme elements, which aims to give students a set of professional skills within a fixed time frame specified in ECTS credits, and concluding with one or more examinations within specific exam periods. Examinations are defined in the curriculum.

The programme is based on a combination of academic, problem-oriented and interdisciplinary approaches and organised based on the following work and evaluation methods that combine skills and reflection:

- lectures
- classroom instruction
- project work
- workshops
- exercises (individually and in groups)
- teacher feedback
- reflection
- portfolio work
Overview of the programme:

All modules are assessed through individual grading according to the 7-point scale or Pass/Fail. All modules are assessed by external examination (external grading) or internal examination (internal grading or by assessment by the supervisor only).

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module</th>
<th>ECTS</th>
<th>Assessment</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Wireless Radio Transmission *)</td>
<td>20</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Stochastic Processes</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Wireless PHY/MAC Fundamentals</td>
<td>5</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>2nd</td>
<td>Wireless Communication in Dynamic Settings</td>
<td>25</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>(with focus on Antenna Systems) (Elective)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wireless Communication in Dynamic Settings</td>
<td>25</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>(with focus on Radio System) (Elective)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wireless Systems Performance</td>
<td>5</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>3rd</td>
<td>Multi Agent Wireless Systems</td>
<td>20</td>
<td>7-point scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Multi Agent Wireless Systems</td>
<td>5</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Antennas and Propagation</td>
<td>5</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>4th</td>
<td>Master’s Thesis</td>
<td>30,</td>
<td>7-point scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>possibly 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) A compulsory course in Problem Based Learning (PBL) is offered as an integrated part of the project module to non-AAU bachelors. If non-AAU students get credit transfer for the 1st Semester project module, then it has to be ensured that they get the PBL competences in other ways.
Descriptions of modules

1st Semester

Wireless Radio Transmission (20 ECTS)
Trådløs radiotransmission

Prerequisites:
B.Sc. in Electrical Engineering

Objective:
Students who complete the module:

Knowledge
Must have knowledge about

- The impact of basic channel variations of stochastic nature - to communication system behavior
- Link budget establishment for a communication system
- Modern techniques for wireless radio transmission
- The block level description of a full wireless communication system (including transmitter, channel and receiver parts) – and the corresponding procedures required for its operation

Skills
The students must be able to

- Design, implement and analyze a solution to a practically occurring communication problem
- apply theories to transmit signals over stationary stochastic channel
- establish a communication system chain
- perform suitable test of implemented application to verify its consistency with established specifications.
- Must be able to communicate the result of the project work in appropriate form as relevant for scientific communication.
- Can explain the process of and criteria for peer reviewed scientific communications
- Can write a paper for a scientific conference/journal
- Can prepare and give an oral and poster presentation for a scientific conference

Competencies
The students must have ability to:

- make a basic design, test and verification of a wireless communication problem
 - generate a set of specifications to perform a stepwise refinement process of the given application

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral examination

The examination is based on questions that take their starting points in the written documentation for the project module.

For further information concerning the examination procedure, refer to the Joint Programme Regulations.
Evaluation criteria:
As stated in the Joint Programme Regulations, it is a precondition for students, with a non-AAU bachelor’s degree that they have passed the course in Problem Based Learning (PBL) at Aalborg University prior to the project examination.
Problem Based Learning (PBL) at Aalborg University

Prerequisites:
None, but the course is compulsory for non-AAU bachelors

Learning outcomes:
After completion of the course the student should

Knowledge
- know how to describe in own words some of the fundamental principles of Problem Based Learning (PBL) as implemented in the Aalborg PBL model at the Faculty of Engineering and Science.
- Know how to identify similarities and differences between the Aalborg PBL study environment and previous study environments, incl. strengths and weaknesses in both environments.

Skills
- be able to structure project management activities based on a well-formulated problem statement
- be able to assess project documentation based on scientific codes of conduct

Competences
- be able to plan for effective collaborative learning in an intercultural environment and manage group conflicts
- be able to reflect on, plan and manage a study project in a PBL learning environment

Content:
Lectures, discussions and group work.

Assessment:
Internal assessment during the course/class participation according to the rules in the Examination Policies and Procedures, Addendum to the Joint Programme Regulations of the Technical Faculty of IT and Design Aalborg University. In this case the assessment is primarily based on the oral performance during the course. This means that the student has to be active during the course time and participate in discussions. The course is an integrated part of the project and a precondition for participation in the project examination for non-AAU bachelors. Consequently, no diploma will be issued for the course nor will it appear on the academic transcripts.

Grading:
Passed/Failed

Assessment criteria:
As stated in the Joint Programme Regulations
Stochastic Processes (5 ECTS)
Stokastiske processer

Prerequisites:
Solid knowledge in Probability, Statistics, Linear Algebra, Fourier Theory, and Programming

Objective:
Students who complete the module must:

Knowledge
- Have knowledge about the theoretical framework in which stochastic processes are defined.
- Be able to understand the properties of the stochastic processes introduced in the course, such as wide-sense stationary (WSS) processes, Auto Regressive Moving Average (ARMA) processes, Markov models, and Poisson point processes.
- Be able to understand how WSS processes are transformed by linear time-invariant systems.
- Be able to understand the theoretical context around the introduced estimation and detection methods ((non-parametric and parametric) spectral estimation, Linear Minimum Mean Square Error (LMMSE) estimation, Wiener filter, Kalman filter, detection of signals, ARMA estimation, etc.)

Skills
- Be able to apply the stochastic processes taught in the course to model real random mechanisms occurring in engineering problems.
- Be able to simulate stochastic processes using a standard programming language.
- Be able to apply the taught estimation and detection methods to solve engineering problems dealing with random mechanisms.
- Be able to evaluate the performances of the introduced estimation and detection methods.

Competencies
- Have the appropriate "engineering" intuition of the basic concepts and results related to stochastic processes that allow – for a particular engineering problem involving randomness – to design an appropriate model, derive solutions, assess the performance of these solutions, and possibly modify the model, and all subsequent analysis steps, if necessary.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination. For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
Wireless PHY and MAC Fundamentals (5 ECTS)
Trådløse PHY og MAC grundbegreber

Prerequisites:
A basic understanding of Wireless Communications Fundamentals, Mathematics and Statistics corresponding to a BSc in Electrical Engineering

Objective:
Students who complete the module:

Knowledge
Must have knowledge about the following:

- Fundamental communication theory for wireless transmission
 - Classical communication theory
 - Noise handling in wireless communications
 - Loss and channel models (Friis transmission formula)
 - Analog chains, noise factor
 - Digital chains, coding
 - Detection and demodulation theory (coherent vs non-coherent)

- Transceiver architectures, blocks and components
 - Transceiver structures and synchronization (incl. duplexing and access aspects)
 - Non-ideal components (non-linearities, compression and intercept)
 - Dynamic range and link budget
 - S-parameter description of components
 - RF/u-wave measurements of wireless communication blocks and chains

- Modeling and simulation of transceiver systems
 - Complex baseband representation of pass-band communication
 - Signal distortion due to block imperfections

Skills
Must be able to:

- Establish a link budget
- Synthesize a transceiver system on a block diagram level
- Describe the modifications that a signal undergoes through a transceiver chain
- Calculate key performance characteristics for a full transceiver chain based on specifications for the individual blocks
- Simulate the transmission of digital data through a full transceiver chain – including transmitter, lossy and noisy wireless channel, and receiver

Competencies
- Must be able to:
 - Discuss and evaluate the impact of different transceiver blocks in a communication link
 - Set up a simulation model to access and evaluate the performance of (digital data) transmission over a wireless communication link

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination.

Evaluation criteria:
As stated in the Joint Programme Regulations.
2nd Semester

Wireless Communication in Dynamic Settings with focus on Antenna System (Elective)
(25 ECTS)
Trådløs kommunikation under dynamiske forhold samt antennesystem

Prerequisites:
1st WCS MSc Semester

Objective:
Students who complete the module:

Knowledge
Must have knowledge about

- Digital communication of analog or digital data over a stochastic fading channel.
- A basic wireless communication system and identify the individual blocks and their interaction. Thus, comprising the ends of the communication links, the transmission technique, the access technology as well as the fading channel.
- Performance enhancing properties of multi antenna system or other technology, in a wireless communication system, with focus on the lower layers of the communication chain.

Skills
The students must be able to

- Extract the specific operating conditions of selected system block(s) in context of the overall communication chain.
- Compare and evaluate the individual stochastically varying links between two communicating entities.
- Evaluate the space and frequency dispersive behavior of the channel.
- Must be able to evaluate and select among different multi antenna techniques for channel stabilization and capacity enhancement.

Competencies
The students must have ability to:

- Analyze, evaluate and model a given wireless communication problem.
- Communicate the project work in sound scientific and academic form.
- Contribute successfully to team work within the problem area and make a common presentation of the project work.

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral examination with grades in accordance with the 7-point grading scale.

The examination is based on questions that take their starting points in the written documentation for the project module.

For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
Wireless Communication in Dynamic Settings with focus on Radio System (Elective)
(25 ECTS)
Trådløs kommunikation i dynamiske forhold samt radiosystem

Prerequisites:
1st WCS MSc Semester

Objective:
Students who complete the module:

Knowledge
Must have knowledge about
- Digital communication of analogue or digital data over a stochastic fading channel.
- A basic wireless communication system and identify the individual blocks and their interaction. Thus, comprising the ends of the communication links, the transmission technique, the access technology as well as the fading channel.
- Radio resources management in a multi-cell system, considering a space and frequency dispersive channel.
- Channel allocation principles and its application to planning of wireless communication systems.

Skills
The students must be able to
- Extract the specific operating conditions of selected system block(s) in context of the overall communication chain.
- Compare and evaluate the individual stochastically varying links between two communicating entities.
- apply and assess stabilization methods to compensate for these variations – and their impact on the wireless communication system capacity. Such as:
 - Scheduling
 - Link adaptation
 - Channel allocation

Competencies
The students must have ability to:
- Analyze, evaluate and model a given wireless communication problem.
- Communicate the project work in sound scientific and academic form.
- Contribute successfully to team work within the problem area and make a common presentation of the project work

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral examination with grades in accordance with the 7-point grading scale.

The examination is based on questions that take their starting points in the written documentation for the project module.

For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
Wireless Systems Performance (5 ECTS)
Trådløs system performance

Objective:
Students who complete the module:

Knowledge
Must have knowledge about the following:

- Link budget analysis
- Wave types
- Power vs protection margins
- Dynamic radio channel characterization
- Short terms descriptions
- Channel hardening/Diversity
- Radio Resource allocation
- Methods for fixed and dynamic channel allocation
- Cellular concept and hand-over
- Link and MAC control, Power control, AMC
- Wireless network performance and traffic analysis
- Dynamic routing
- Transport – congestion control – performance impact
- Wireless network architectures
- Short range infra-structures
- Cellular infra-structure

Skills
The students must be able to

- Establish a link budget with account for dynamic protection margins for a given wireless communication system
- Select the relevant metrics to establish and estimate Quality of Service (QoS) performance
- Establish radio resource requirements based on traffic load
- Evaluate feasibility of routing strategies based on system properties and requirements
- Evaluate and select different wireless networking architectures based on system requirements
- Evaluate properties of dynamic channels and apply stabilization techniques

Competencies
The students must be able to

- Analyze, evaluate and model the chain from PHY to Transport layer and how it combines towards the total performance and QoS of a wireless communication system

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination. Grading according to the pass/fail. For further information concerning the examination procedure, refer to the Joint Programme Regulations.
Evaluation criteria:
As stated in the Joint Programme Regulations.
3rd Semester

Multi Agent Wireless Systems (20 ECTS)
Multi agent trådløse systemer

Prerequisites:
The 1st and 2nd Semesters of the WCS MSc program

Objective:
Students who complete the module:

Knowledge
Must have knowledge about

- Item the interaction of multiple communication links which are jointly considered to optimize system performance
- Wireless communications technologies for multi-user/multi-network setting.
- Specific in-depth knowledge about at least one advanced method or technology applied to wireless communications. Such as
- The generic multiple access principles as it applies to time, frequency, code and space - and know their advanced formats for multi agent support.
- Methods used to model electro-magnetic properties of antennas and propagation for wireless communication, and exploit their characteristics for terminal or system performance
- Channel characterization and processing algorithms to exploit multi link radio propagation mechanisms of multiple antenna systems

Skills
The students must be able to

- Evaluate the impact on system performance, by joint treatment of links in a multi-user/multi-network scenario – or other interaction mechanisms.
- Apply multi-agent or other modern/advanced techniques to a practical problem in modern wireless communications and evaluate their applicability
- Excel in least one advanced method or technology applied to wireless communications.

Competencies
The students must have ability to:

- Assess and exploit the space domain, the multiple user dimensions - or other modern/advanced technologies, to provide additional degrees of freedom to the system design.
- Communicate the project work in sound scientific and academic form
- Contribute successfully to team work within the problem area and make a common presentation of the project work

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral examination with grades in accordance with the 7-point grading scale.

The examination is based on questions that take their starting points in the written documentation for the project module.

For further information concerning the examination procedure, refer to Joint Programme Regulations.
Evaluation criteria:
As stated in the Joint Programme Regulations
Multi Agent Wireless Systems (5 ECTS)
Multi agent trådløse systemer

Prerequisites:
Wireless System Performance (8 sem WCS and NDS) Introduction to Probability, Statistics and Stochastic Processes (6-1) Stochastic Processes (S1-3) Matrix Computations and Convex Optimization (P6-MCC)

Objective:
Students who complete the module:

Knowledge
Must have knowledge about
- Advanced Access
- CDMA for multi-user systems
- Multicarrier systems (OFDM and OFDMA)
- Space division multiple access (SDMA)
- Distributed antenna systems
- Short range communications
- Passive communications/RFID-enabled devices
- Energy-cost-performance balancing
- Network level
- Device level
- Cooperative communications
- Ad-hoc
- Cognitive radio and dynamics spectrum sharing
- Network coding
- Space and time processing
- Spatial data multiplexing and space-time coding
- Time reversal techniques

Skills
The students must be able to
- Determine advantages vs disadvantages of a chosen access technique
- Compare different cooperative communication schemes and their operation in interference scenarios
- Assess different technology features on cost-resource balancing in practical settings
- Apply processing methods for time and space exploitation of the wireless radio channel

Competencies
The students must be able to:
- Compare and assess tradeoffs for performance optimization in heterogeneous (advanced) wireless communications.
- Choose the technology most suitable under given practical implications and limitations

Type of instruction:
As described in the introduction to Chapter 3.
Exam format:
Individual oral or written examination. Grading according to the pass/fail.

For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
Antennas and Propagation (5 ECTS)
Antenner og Udbredelse

Prerequisites:
Understanding of Electro-magnetics, Antennas and their connection to stochastic radio channels. Introduction to Wireless Communications (5-6) Wireless System Performance (8sem WCS and NDS)

Objective:
Students who complete the module:

Knowledge
Must have knowledge about
- Antennas
- Basic antennas
- Requirements for antennas in a scattering radio environment
- Multi-antenna/ correlation analysis
- Antenna measurement principles
- Near field (antenna design)
- Finite Difference Time Domain (FDTD) Method
- Method of Moments
- Far field (propagation)
- Ray tracing
- Phase screen methods and diffraction
- Propagation scattering modeling for multiple antenna systems

Skills
- Identify connection between antenna system and radio channel behavior
- Assess performance of antenna elements and antenna systems
- Select appropriate Electro-magnetic near and far field Simulation methodology for realistic antenna and propagation settings

Competencies
- Apply antenna(system) and propagation conditions in new/real-world constellations for analyzing wireless communication system impact and performance optimization
- Evaluate limits of the methods and theories as applied to more general problems

Type of instruction:
As described in the introduction to Chapter 3.

Exam format:
Individual oral or written examination. Grading according to the pass/fail.
For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
4th Semster

Master's Thesis (30, possibly 50 ECTS)

Kandidatspeciale

The master thesis can be conducted as a long master thesis. If choosing to do a long master thesis, it has to include experimental work and has to be approved by the study board. The amount of experimental work must reflect the allotted ECTS.

Prerequisites:

1st – 3rd Semester

Objective:

Students who complete the module:

Knowledge

- have knowledge, at the highest international level of research, of at least one of the core fields of the education
- have comprehension of implications of research (research ethics)

Skills

- are able to reflect on a scientific basis on their knowledge,
- can argue for the relevance of the chosen problem to the education including specifically account for the core of the problem and the technical connections in which it appears
- can account for possible methods to solve the problem statements of the project, describe and assess the applicability of the chosen method including account for the chosen delimitation and the way these will influence on the results of the product
- can analyze and describe the chosen problem applying relevant theories, methods and experimental data
- are able to describe the relevant theories and methods in a way that highlights the characteristics and hereby document knowledge of the applied theories, methods, possibilities and delimitations within the relevant problem area
- have the ability to analyze and assess experimental data, including the effect the assessment method has on the validity of the results.

Competencies

- are able to communicate scientific problems in writing and orally to specialist and non-specialist.
- are able to control situations that are complex, unpredictable and which require new solutions,
- are able to independently initiate and to perform collaboration within the discipline and interdisciplinary as well, and to take professional responsibility,
- are able to independently take responsibility for his or her own professional development and specialization.

If the project is carried out as a long master's thesis the learning objectives include those defined for the 3rd Semester of the education.

Type of instruction:

As described in the introduction to Chapter 3.

Exam format:

Problem based project oriented project work individual or in groups of 2-3 persons

Individual oral examination with grades in accordance with the 7-point grading scale. An external censor is appointed.
The examination is based on questions that take their starting points in the written documentation for the project module.

For further information concerning the examination procedure, refer to the Joint Programme Regulations.

Evaluation criteria:
As stated in the Joint Programme Regulations.
Chapter 4: Entry into Force, Interim Provisions and Revision

The curriculum is approved by the Dean of The Technical Faculty of IT and Design and enters into force as of September 2017.

Students who wish to complete their studies under the previous curriculum from 2011 must conclude their education by the summer examination period 2018 at the latest, since examinations under the previous curriculum are not offered after this time.

Chapter 5: Other Provisions

5.1 Rules concerning written work, including the Master's thesis
In the assessment of all written work, regardless of the language it is written in, weight is also given to the student's spelling and formulation ability, in addition to the academic content. Orthographic and grammatical correctness as well as stylistic proficiency are taken as a basis for the evaluation of language performance. Language performance must always be included as an independent dimension of the total evaluation. However, no examination can be assessed as 'Pass' on the basis of good language performance alone; similarly, an examination normally cannot be assessed as 'Fail' on the basis of poor language performance alone.
The Board of Studies can grant exemption from this in special cases (e.g., dyslexia or a native language other than Danish).
The Master's Thesis must include an English summary.\(^1\) If the project is written in English, the summary must be in Danish.\(^2\) The summary must be at least 1 page and not more than 2 pages. The summary is included in the evaluation of the project as a whole.

5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another programme at a university in Denmark or abroad
In the individual case, the Board of Studies can approve successfully completed (passed) programme elements from other Master's programmes in lieu of programme elements in this programme (credit transfer). The Board of Studies can also approve successfully completed (passed) programme elements from another Danish programme or a programme outside of Denmark at the same level in lieu of programme elements within this curriculum. Decisions on credit transfer are made by the Board of Studies based on an academic assessment. See the Joint Programme Regulations for the rules on credit transfer.

5.3 Rules for examinations
The rules for examinations are stated in the Examination Policies and Procedures published by the Technical Faculty of IT and Design on their website.

5.4 Exemption
In exceptional circumstances, the Board of Studies study can grant exemption from those parts of the curriculum that are not stipulated by law or ministerial order. Exemption regarding an examination applies to the immediate examination.

5.5 Rules and requirements for the reading of texts
It is assumed that the student can read academic texts in his or her native language as well as in English and use reference works etc. in other European languages.

\(^1\) Or another foreign language (upon approval from the Board of Studies)
\(^2\) The Board of Studies can grant exemption from this.
5.6 Additional information
The current version of the curriculum is published on the Board of Studies’ website, including more detailed information about the programme, including exams.