Curriculum for Bachelor of engineering in electronics

Aalborg University
September 2017
PREFACE:

Curriculum for the Bachelor of Engineering programme in Electronics. The programme follows the Joint regulations and the Examination Policies and Procedures for the Faculty of Engineering and Science.

AAU, October 2016

Uffe Kjærulff
Director of studies
Table of contents

TABLE OF CONTENTS... 3

CHAPTER 1: LEGAL BASIS OF THE CURRICULUM, ETC... 4
 1.1 Basis in ministerial orders .. 4
 1.2 Faculty affiliation .. 4
 1.3 Board of Studies affiliation ... 4

CHAPTER 2: ADMISSION, DEGREE DESIGNATION, PROGRAM DURATION AND
COMPETENCE PROFILE .. 4
 2.1 Admission .. 4
 2.2 Degree designation in Danish and English... 4
 2.3 The programme’s specification in ECTS credits ... 4
 2.4 Competence profile on the diploma .. 4

CHAPTER 3: CONTENT AND ORGANISATION OF THE PROGRAMME ... 6
 3.1 Overview of the programme: ... 7
 3.2 Descriptions of modules .. 8

CHAPTER 4: ENTRY INTO FORCE, INTERIM PROVISIONS AND REVISION 56

CHAPTER 5: OTHER PROVISIONS .. 56
 5.1 Rules concerning written work, including the Bachelor’s project .. 56
 5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that
are part of another programme at a university in Denmark or abroad ... 56
 5.3 Rules concerning the progress and completion of the Bachelor of Engineering programme 56
 5.4 Rules for examinations ... 57
 5.5 Exemption .. 57
 5.6 Rules and requirements for the reading of texts in foreign languages and a statement of the
foreign language knowledge this assumes ... 57
 5.7 Additional information ... 57
Chapter 1: Legal Basis of the Curriculum, etc.

1.1 Basis in ministerial orders
The Bachelor of Engineering programme in Electronics is organised in accordance with the Ministry of Science, Innovation and Higher Educations Order no. 11060 of September 7, 2016 on the Bachelor of Engineering Programme and Ministerial Order no. 41 of January 16, 2014 on Examinations in Vocational Programmes, with subsequent changes. Further reference is made to the Ministry of Science, Innovation and Higher Educations Order no. 85 of January 26, 2016 (the Admissions Order) and Ministerial Order no. 262 of March 20, 2007 (the Grading Scale and other Forms of Assessment), with subsequent changes.

1.2 Faculty affiliation
The Bachelor of Engineering programme falls under the Technical Faculty of IT and Design.

1.3 Board of Studies affiliation
The Bachelor of Engineering programme falls under the Board of Studies for Electronics and IT.

Chapter 2: Admission, Degree Designation, Program Duration and Competence Profile

2.1 Admission
Admission to the Bachelor of Engineering programme in Electronics requires an upper secondary education.

The program’s specific requirements are: English B, Mathematics A and either Physics B or Geoscience A according to admission notice. All subjects must be passed.

2.2 Degree designation in Danish and English
The Bachelor of Engineering programme entitles the graduate to the designation Diplomingeniør i elektronik, Professionsbachelor i ingeniørvirksomhed. The English designation is: Bachelor of Engineering in Electronics.

2.3 The programme’s specification in ECTS credits
The Bachelor of Engineering programme is a 3½ year, full-time study programme where the knowledge foundation of the instruction is characterised by a basis in development, a basis in the profession and a connection to research. The programme is set to 210 ECTS credits.

2.4 Competence profile on the diploma
The competence profile below will appear on the diploma:

A graduate with a Professional Bachelor’s degree has competences acquired in a development-based study environment with a connection to research and with a relevant, mandatory traineeship period in dialogue with potential employers.

A graduate with a Professional Bachelor’s degree has fundamental knowledge and insight in the central subjects and methods that are needed in the profession. These attributes qualify the graduate to perform professional functions and to function independently within the field, and to pursue further education in a relevant Master’s (adult and continuing education) or Master’s (MSc) programme.
2.5 Competence profile of the programme:

The graduate of the Bachelor of Engineering programme:

Knowledge

• Has knowledge of and insight into fundamental theories, methods and practical subjects within the field of Electronics and Computer Engineering
• Is able to understand and reflect upon theories, methods and practical subjects within the field
• Has a firm grasp of the mathematical and programming foundations of the field
• Can analyse, design, implement, test and document micro-processor-based systems
• Has knowledge of the interaction between electronic and physical systems, including feedback mechanisms, electronic circuits, automation and control systems, and signal processing
• Has insight into techniques and methods for real-time acquisition, storage and processing of complex information
• Has insight into analysis, design and test methods for feedback control and digital signal processing

Has insight into the profession

Skills

• Can utilize up-to-date scientific methods, tools and techniques to analyse and solve complex problems in the field of Electronics and Computer Engineering
• Can evaluate and compare theoretical and practical problems, as well as describe and select relevant solution strategies
• Is able to implement such solution strategies and evaluate them in a systematic manner
• Is able to present problems and solution strategies within the field of Electronics and Computer Engineering, in writing as well as orally, to specialists as well as non-specialists, including external parties, users, etc.

Can reflect on the exchange of information between the education and the profession

Competencies

• Is able to handle complex situations that arise in research and/or development-related environments, such as university studies and/or engineering workplaces.
• Is able to develop and test hardware and software for embedded systems in a broad systems-oriented context
• Can work independently as well as in collaboration with others, both within and across technical fields, in an efficient and professional manner
• Is able to identify his/her own learning needs and structure his/her own learning in various learning environments
Chapter 3: Content and Organisation of the Programme

The programme is structured in modules and organised as a problem-based study. A module is a programme element or a group of programme elements, which aims to give students a set of professional skills within a fixed time frame specified in ECTS credits, and concluding with one or more examinations within specific exam periods. The examinations are defined in the curriculum.

The programme is based on a combination of academic, problem-oriented and interdisciplinary approaches and organised based on the following work and evaluation methods that combine skills and reflection:

- lectures
- classroom instruction
- project work
- workshops
- exercises (individually and in groups)
- teacher feedback
- reflection
- portfolio work
3.1 Overview of the programme:
All modules are assessed through individual grading according to the 7-point scale or Pass/Fail. All modules are assessed by external examination (external grading) or internal examination (internal grading or assessment by the supervisor only).

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module</th>
<th>ECTS</th>
<th>P/C *)</th>
<th>Assessment</th>
<th>Grading</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED1</td>
<td>Technological Project Work</td>
<td>5</td>
<td>P</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Monitoring & Programming</td>
<td>10</td>
<td>P</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Imperative Programming</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Problem Based Learning in Science, Technology and Society</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Linear Algebra</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td>ED2</td>
<td>Analog Instrumentation</td>
<td>15</td>
<td>P</td>
<td>7 grade scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Calculus</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Basic Electrical Engineering</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Digital Design & Sensors</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>ED3</td>
<td>Microprocessor Based Systems</td>
<td>15</td>
<td>P</td>
<td>7 grade scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>AC-Circuits & Electro Physics</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Advanced Calculus</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Micro Processors & Programming</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>ED4</td>
<td>Control Engineering</td>
<td>15</td>
<td>P</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Modelling & Simulations</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Control Theory</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Power Electronics & Networks</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td>ED5</td>
<td>Automation*</td>
<td>15</td>
<td>P</td>
<td>7 grade scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Digital Filtering*</td>
<td>15</td>
<td>P</td>
<td>7 grade scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Numerical Methods</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Signal Processing</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Real-time Embedded Systems</td>
<td>5</td>
<td>C</td>
<td>Pass/Fail</td>
<td>Internal</td>
</tr>
<tr>
<td>ED6 +7</td>
<td>Internship for Bachelors of Engineering</td>
<td>30</td>
<td>P</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
<tr>
<td></td>
<td>Bachelor Project</td>
<td>25</td>
<td>P</td>
<td>7 grade scale</td>
<td>External</td>
</tr>
<tr>
<td></td>
<td>Statistics **)</td>
<td>5</td>
<td>C</td>
<td>7 grade scale</td>
<td>Internal</td>
</tr>
</tbody>
</table>

* Elective module
** In collaboration with the supervisor the student can replace Statistics course with another approved course if it can improve the student's profile. Application must be sent to the Board of Study.
3.2 Descriptions of modules

Technological Project Work
Teknologisk projektarbejde

Semester: 1st semester
Purpose: Through this module, the student shall acquire knowledge about problem oriented and problem based learning. Furthermore, he/she shall acquire first-hand knowledge about project-oriented group work as a learning method. Additionally, the student will be introduced to basic problems and concepts within the field of Electronics and IT.

Objectives: After completion of the module, the student:

Knowledge
- Shall have insight into elementary concepts related to project-oriented group work.
- Shall be familiar with the processes involved in project work, knowledge acquisition and supervisor collaboration

Skills
- Shall be able to define project goals and work in a methodical manner toward achieving such goals
- Shall be able to describe and analyse several approaches to project solutions
- Shall be able to present results achieved within the project in writing, orally, and graphically in a comprehensive manner.

Competencies
- Shall be able to reflect upon the problem oriented and problem based learning approach taken throughout the study
- Shall be able to document the results achieved during the project in a report
- Shall be able to cooperate with other students during the project period and make a joint presentation of the results achieved in the project.
- Shall be able to reflect upon different ways of presenting results achieved with the project in writing, orally, and graphically.

Content: The project group must prepare a report and process analysis, participate in a P0 collection of experience and attend a presentation seminar where the project group documents discussed.

Type of instruction: Project work with supervision
Exam format: Individual oral examination based on a written report
Evaluation criteria: According to the Faculty’s assessment criteria’s
Monitoring & Programming

Overvågning og programmering

Semester: 1st semester
Prerequisites: Technological project work (P0)

Purpose: One of the most fundamental capabilities any electronics and computer Engineer must possess is the ability to construct functionality that allows a computer to interact with its surroundings. Through the 1st semester project, the students shall acquire basic knowledge within electronics and computer engineering through practical and theoretical work. The project takes its starting point in a problem of relevance to society or industry; the problem is then broken down into smaller, more manageable sub-problems and analysed for the purpose of defining a relevant technical problem formulation, which can be solved via theories and methods related to micro-processor- or PC- based systems. The solution shall encompass an electronic system containing (at least) a programmable electronic computing device, which is able to measure signals from its surroundings via selected sensors and process them in some digital form.

Objectives: Students who complete the module:

Knowledge
- Must have understanding of basic electronic systems and their interaction with their surroundings
- Must have basic insight into concepts such as signals, sensors, actuators and micro-processors
- Shall have sufficient insight into technological and social issues to enable them to pinpoint relevant problems that can be solved by technical means
- Shall have knowledge about common processes in extensive, problem-oriented projects
- Shall be able to explain and clarify theories and methods used in the project

Skills
- Given a socially relevant problem, must be able to identify relevant requirements to a technical solution, product or similar
- Must be able to follow a relevant method for structured development in the project, including formulation and analysis of the problem, define a requirement specification and divide the problem into sub-problems that can be resolved separately
- Shall be able to utilize the selected sensors and actuators for data collection and interaction with an electronic system and its surroundings as well
- Shall be able to formulate and solve technical problems via algorithms and be able to implement algorithms in a micro-processor or similar programmable device
- Shall be able to analyse and evaluate their own utilization of taught theories and methods
- Shall be able to document and present the knowledge and skills outlined above, using correct terminology, in writing as well as orally
- Shall be able to analyse and evaluate their own learning processes using relevant methods
- Shall be able to plan and carry out an extensive group project in collaboration with a supervisor

Competencies
- Shall understand the general concept of a system, in particular pertaining to electronic systems interacting with their surroundings
- Shall be able to assume responsibility for their own learning processes during an extensive group project, as well as generalize and interpret the experience acquired
- Shall be able to plan, structure, carry out, and reflect upon a project that starts from a socially or industrially relevant problem, in which electronic systems and information technology is an important element, individually as well as in groups.

Type of instruction: Project work with supervision

Examination: Oral examination based on a written report

Evaluation criteria: According to the Faculty’s assessment criteria’s
Imperative Programming

Semester: 1st semester

Purpose: Students who complete the module enrich their background in working with computers and other digital devices in procedural ways to enable programming for different media platforms and working with analog and digital sensors.

Objectives: Students who complete the course module

Knowledge
- Shall have understanding of integrated development environments
- Shall have understanding of differences between run-time and compile-time computer programming languages
- Shall be able to explain the concepts of types, declarations, expressions and statements
- Shall be able to make use of libraries and understand the concept of linking
- Shall have insight into data structures, such as arrays
- Shall have insight into input/output in various forms
- Shall have understanding of procedures and functions, including function arguments
- Shall have understanding of pointers and references
- Shall have understanding of the complexity of a program
- Shall have understanding of simple algorithms

Skills:
- Shall be able to interpret and analyse a basic imperative program and elaborate its functionality
- Shall be able to design and implement algorithms for data structure manipulation using references and addresses where necessary
- Shall be able to estimate the complexity of a program
- Shall be able to explain how to use algorithms, functions and data for solving problems (understanding)

Competencies:
- Must be able, individually and in collaboration with others, to design and implement one or more imperative program(s) to solve a previously specified problem

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Problem Based Learning in Science, Technology and Society
Problembaseret læring i videnskab, teknologi og samfund

Semester: 1st semester
Purpose: To enable the student to approach real-life complex problems in a methodical manner, and to carry out project work, planning and documentation in a structured way.

Objectives: Students who complete the course module will obtain the following qualifications:

Knowledge
- Shall be able to explain basic learning theory
- Shall be able to explain techniques for planning and management of projects
- Shall be able to explain different approaches to problem-based learning (PBL), including the so-called Aalborg model based on problems that are part of a social and/or humanistic context
- Shall be able to explain different approaches to analysis and assessment of problems and solutions within engineering, natural and health sciences from a theoretical, ethical, and societal perspective
- Shall be able to explain how these methods can be applied within electronics and computer engineering

Skills
- Must be able to plan and manage a problem-based study project
- Must be able to analyse the project group's organization and cooperation in order to identify strengths and weaknesses, and suggest how cooperation in future groups can be improved based on this analysis
- Must be able to reflect on the causes and devise possible solutions to any group conflicts
- Must be able to analyse and evaluate their own study work and learning, in order to identify strengths and weaknesses, and use these reflections to consider further study and group work
- Must be able to reflect upon the methods used from a theoretical perspective
- Must be able to identify relevant areas of focus, concepts and methods to assess and develop technical solutions under consideration of the social and humanistic contexts that solution must be a part of

Competencies
- Shall be able to take part in a team-based project
- Shall be able to document and present work carried out in a project
- Shall be able to reflect upon and develop his/her own learning
• Shall be able to engage in and improve upon the collaborative learning processes
• Shall be able to reflect upon his/her professional activities in relation to the surrounding community

Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral or written examination
Evaluation criteria: According to the Faculty’s assessment criteria’s
Linear Algebra

Purpose
Linear algebra is a fundamental tool for virtually all engineering mathematics

Objectives: Students who complete the module:

Knowledge
- Shall have knowledge about definitions, results and techniques within the theory of systems of linear equations
- Shall be able to demonstrate insight into linear transformations and their connection with matrices
- Shall have obtained knowledge about the computer tool MATLAB and how it can be used to solve various problems in linear algebra
- Shall have acquired knowledge of simple matrix operations
- Shall know about invertible matrices and invertible linear mappings
- Shall have knowledge of the vector space \mathbb{R}^n and various subspaces
- Must have knowledge of linear dependence and independence of vectors and the dimension and bases of subspace
- Must have knowledge of the determinant of matrices
- Must have knowledge of Eigen values and eigenvectors of matrices and their use
- Must have knowledge of projections and orthonormal bases
- Must have knowledge of first order differential equations, and on systems of linear differential equations

Skills
- Must be able to apply theory and calculation techniques for systems of linear equations to determine solvability and to provide complete solutions and their structure
- Must be able to represent systems of linear equations using matrix equations, and vice versa
- Must be able to determine and apply the reduced Echelon form of a matrix
- Must be able to use elementary matrices for Gaussian elimination and inversion of matrices
- Must be able to determine linear dependence or linear independence of small sets of vectors
- Must be able to determine the dimension of and basis for small subspaces
• Must be able to determine the matrix for a given linear transformation, and vice versa
• Must be able to solve simple matrix equations
• Must be able to calculate the inverse of small matrices
• Must be able to determine the dimension of and basis for kernel and column spaces
• Must be able to compute determinants and could use the result of calculation
• Must be able to calculate Eigen values and eigenvectors for simple matrices
• Must be able to determine whether a matrix is diagonalizable, and if so, implement a diagonalization for simple matrices
• Must be able to compute the orthogonal projection onto a subspace of \mathbb{R}^n
• Must be able to solve separable and linear first order differential equations, in general, and with initial conditions

Competencies
• Shall demonstrate development of his/her knowledge of, understanding of, and ability to make use of, mathematical theories and methods within relevant technical fields
• Shall, given certain pre-conditions, be able to make mathematical deductions and arguments based on concepts from linear algebra

Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral or written examination
Evaluation criteria: According to the Faculty’s assessment criteria’s
Analog Instrumentation

Purpose:
Through theoretical and practical work on a selected problem, the students acquire knowledge in the electronics and computer engineering discipline, as well as use appropriate methods to document that the problem has a relevant social context. The problem is analysed by decomposition into sub problems in order to formulate a technical problem that can be solved by using analog electronic systems that interact with the environment in one way or another. The complete solution is assessed with respect to the relevant social context. Compared to the first semester, this semester focuses more on the continuous-time (analog) aspects of electronic systems as well as interaction with the surroundings in greater detail.

Objectives:
Students who complete the module:

Knowledge
- Shall have gained experience with theories and methods of calculation and simulation of linear electronic circuits, linear electro-mechanical systems, and/or other linear systems
- Shall have acquired knowledge of methods for analysis of linear dynamic systems, including electronic circuits, described by differential equations
- Shall have gained insight into basic feedback theory and its applications in electronic systems
- Must master calculations with complex numbers, as used within the field of electronics
- Shall have knowledge of recognized standards for documentation of electronic circuits, including electrical diagrams, PCB layout, etc.
- Shall be able to demonstrate knowledge of theory and method to the extent of being able to explain and justify the project's theory and methods, including both selection and de-selection.
- Shall master the relevant terminology

Skills
- Shall have understanding of basic theories behind simple electronic components such as resistors, capacitors, operational amplifiers, etc., including calculation of these components
- Shall be able to identify, analyse and formulate issues within the discipline through the use of contextual and technical analysis methods
- Shall, based on the above, be able to create requirements and
test specifications that enable the completed system to be tested rigorously

- Shall be able to use mathematical theories and methods to analyse problems involving linear dynamic components
- Shall be able to simulate and design simple analog circuits, allowing specific, desired properties to be achieved.
- Shall be able to design and implement basic analog and digital circuits and demonstrate that these work as intended
- Shall be able to document and disseminate knowledge and skills with proper use of terminology, orally and in writing through a project report
- Shall be able to analyse and reflect upon his/her own learning process using appropriate methods of analysis and experience from P0 and P1
- Shall be able to analyse a technical-scientific problem under consideration of technological and societal contexts, and assess the technological and social consequences of proposed solutions.

Competences

- Must be able to demonstrate, independently and in groups, the ability to plan, organize, implement and reflect upon a project that is based on a problem of relevance to society or industry, in which analog electronic devices play a central role

- Must have acquired, independently and in groups, the ability to obtain the necessary knowledge of a contextual as well as of technical nature, and be able to formulate models of limited parts of reality to such a level of abstraction that the models can be used in the design, implementation and test of a comprehensive system to meet given requirements

- Must be able to evaluate and take responsibility for science and technical solutions in a societal perspective.

- Must be able to generalize and reflect upon the experience with project planning and cooperation for the further study acquired during the project work

Type of instruction: Project work with supervision

Exam format: Oral examination based on a written report

Evaluation criteria: According to the Faculty’s assessment criteria’s
Calculus

Semester: 2nd semester
Prerequisites: The module builds on knowledge from linear algebra
Purpose: Calculus is the branch of mathematics that studies differential equations and operations such as integration. Differential equations, in turn, describe (among other things) how signals in electric circuits behave

Objectives: Students who complete the module:

Knowledge
- Must have knowledge of definitions, results and techniques within the theory of differentiation and integration of functions of two or more variables
- Must have knowledge of the trigonometric functions and their inverse functions
- Must have knowledge of complex numbers, including rules for computation and their representations
- Must have knowledge of factorization of polynomials over the complex numbers
- Must have knowledge of the complex exponential function, its characteristics and its connection with trigonometric functions
- Must have knowledge of curves in the plane (both rectangular and polar coordinates) and spatial parameterizations, tangent vectors and curvatures of such curves
- Must have knowledge of the theory of second order linear differential equations with constant coefficients

Skills
- Must be able to visualize functions of two and three variables using graphs, level curves and level surfaces
- Must be able to determine local and global extreme for functions of two and three variables
- Must be able to determine area, volume, moment of inertia etc. using integration theory
- Must be able to approximate functions of one variable using Taylor's formula, and use linear approximations for functions of two or more variables
- Must be able to perform arithmetic computations with complex numbers
- Must be able to find the roots in the complex quadratic equation and perform factorization of simple polynomials
- Must be able to solve linear second order differential equations with constant coefficients, in general, and with initial conditions
• Must be able to use the concepts, findings and theories introduced in the course to make mathematical deductions in the context of simple and concrete abstract problems

Competencies
• Shall demonstrate development of his/her knowledge of, understanding of, and ability to make use of, mathematical theories and methods within relevant technical fields
• Shall, given certain pre-conditions, be able to make mathematical deductions and arguments based on concepts from multi-variable calculus

Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Basic Electrical Engineering
Grundlæggende elektronik

Semester: 2nd semester
Prerequisites: The module builds on knowledge from monitoring and programming (P1) or 1st semester of Electronics and IT or Energy studies
Purpose: To give the students theoretical and practical insight into analog electronic devices, their models, and how to use them in the design of electronic systems

Objectives: Students who complete the module:
Knowledge
- Must have knowledge and understanding of resistive electrical circuits
- Must have knowledge and understanding of operational amplifiers
- Must have knowledge and understanding of analog electronics, including diodes and transistors
- Must have knowledge and understanding of electrical measurement techniques
- Must have knowledge and understanding of laboratory safety of electro technical laboratory experiments
- Must have knowledge of Basic DC Circuit Theory (without energy storing components) including
 - Ohm's law
 - Kirchhoff's laws
 - Circuit reductions (serial and parallel)
 - Star-triangle dependent and independent sources
 - The focal point and mask method
 - Basic operational amplifier couplings
 - The ideal operational amplifier
 - Thévenin and Norton theorems, the superposition principle, and the maximum power transfer principle.
- Must have knowledge of PN transitions including
 - The diode and its stationary large / small-signal model diode as rectifier
 - Transistor and its use as a linear amplifier
 - The transistor as a switch
 - Semiconductor models in simulation software
- Must have knowledge of measurement theory including
 - Measurement of voltage, current, power and energy
 - Measuring instruments such as voltmeter, ampere meter, wattmeter as well as multi-meter and oscilloscopes
 - Accuracy, complex measurement errors and uncertainty
calculations
- Must have knowledge of relevant rules and regulations

Skills
- Must be able to analyse simple and complex electrical DC circuits
- Must be able to use circuit analysis techniques to calculate currents, voltages, energy and power in DC circuits
- Must be able to use circuit reduction methods to simplify electrical circuit models
- Must be able to apply and analyse electrical DC circuits with diodes and transistors
- Must be able to use analysis methods to design the operational amplifier couplings
- Must be able to plan and execute well-designed, successful electro technical laboratory experiments in a safe and appropriate manner

Competencies
- Must be able to handle simple development-oriented situations related to electric circuits and laboratory setups in study- or work-related contexts
- Must be able to independently engage in professional and interdisciplinary collaboration with a professional approach within the context of basic electrical engineering
 Must be able to identify his/her own learning needs within basic circuit theory and the electro technical laboratory experiments, and structure such learning accordingly.

Type of instruction: As described in the introduction to Chapter 3. Notice that attendance at lab exercises is mandatory.
Exam format: Individual oral or written examination
Evaluation criteria: According to the Faculty’s assessment criteria’s
Digital Design & Sensors

Digital design og sensorer

Semester: 2nd semester
Prerequisites: The module builds on knowledge from monitoring and programming (P1)

Purpose: To help the students to acquire knowledge and skills which enable the analysis and designing of basic digital circuits, they acquire knowledge about various sensors and develop skills to use and monitor the signals. To teach the operating principles of various typical sensors and to introduce the concepts & designs for the measurement of electrical and non-electrical quantities.

Objectives: Students who complete the module:

Knowledge:

- Must have knowledge and understanding of basic digital circuits
- Must have knowledge of Boolean algebra and minimal methods
- Must be able to explain the difference between CMOS and TTL circuits
- Must have knowledge of Multi-vibrators & Sequential circuits.
- Must have knowledge of Bi-stable Circuits, structure of mono-stable and a-stable circuits.
- Must have knowledge of Mealy and Moore State Machines
- Must have knowledge of Counters and Shift Registers
- Must have knowledge of different sensors
- Must have knowledge of how signal is obtained from different sensors
- Must have knowledge of internal working principal of various sensors.

Skills:

- Must be able to analyse simple digital circuits
- Must be able to design digital circuits which is a central feature of data or electrical engineering
- Must be able to understand the analysis, design and the realization of digital circuits
- Must be able to demonstrate an understanding of relevant concepts, theories and methods of analysis and synthesis of combinational and sequential networks.
- Must be able to apply concepts, theories and methods to describe and analyse a specific problem and explain the theoretical and practical implementation considerations.
- Must be able to outline the main electrical characteristics of logic building blocks.
- Must be able to demonstrate knowledge of different logical networks, including both combinational and sequential
- Must be able to model and synthesize digital circuits.
• Must be able to use Karnaugh Map to simplify circuit design
• Must be able to use measurements terminologies including resolution, sensitivity, accuracy, and uncertainty
• Must be able to use sensors for example for the measurement of temperature, displacement and position, digital encoders, shaft encoders, absolute and relative encoders, linear encoders.

Competencies:
• Must be able to handle simple development-oriented situations related to digital circuits design, sensors and laboratory setups in study- or work-related contexts
• Must be able to independently engage in professional and interdisciplinary collaboration with a professional approach within the context of digital electronics and sensor measurements
• Must be able to identify his/her own learning needs within digital electronics and sensor technology theory and the electro technical laboratory experiments, and structure such learning accordingly.

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Micro Processor Based Systems

Microprocessor-baserede systemer

Semester: 3rd semester
Prerequisites: Knowledge of electronics corresponding to analog Instrumentation (2nd semester)
Purpose: Students shall understand the fundamental principles of microprocessor based systems and be able to construct and program a specific microprocessor based system so as to handle a small sized practical problem.
Objectives: Students who complete the module:

Knowledge:
- Be able to build and program a microprocessor based system
- Must have knowledge of the methodology used for constructing connected digital systems, including an introduction to fundamental digital circuits, their use and limitations
- Must have insight of basic terminology for the architecture of microprocessors

Skills:
- Be able to synthesize a microprocessor based system based on a specific technical problem, with the possibility of simple interaction between a user and surroundings
- Be able to modularize the total system into hardware and software with well-defined interfaces
- Be able to determine the architecture with regard to hardware and software and communication between subsystems
- Must be able to design a microprocessor program which can runs on its own for controlling the digital/analog hardware
- Must be able to elaborate a number of possibilities for analysis, program development, programming and testing for the entire microprocessor based system
- Be able to synthesize, document and bring the entire system (hardware and software) to working condition

Competencies:
- Be able to analyse and specify the design requirement through problem domain analysis
- Be able to design a microprocessor based system based on the design specifications
- Be able to implement and test the developed system with the purpose of verifying the hypothesis, as well as draw conclusions based on the achieved result.

Type of instruction: Project work with supervision
Exam format: Oral examination based on a written report
Evaluation criteria: According to the Faculty’s assessment criteria’s
AC-Circuits & Electro Physics
AC kredsløbsteorit og elektrofysik

Semester: 3rd semester
Prerequisites: Knowledge of electronics corresponding to analog instrumentation (2nd semester)

Purpose: To teach students with fundamental knowledge of AC circuits and electro physics. To enable them to do analysis about static, quasistatic and dynamic electrical circuits connecting with combined electrical and magnetic fields

Objectives: Students who complete the module:

Knowledge:
- Have knowledge of static and quasistatic electrical and magnetic fields, capacity and inductance
- Must be able to understand and analyse circuits containing resistive, capacitive and inductive elements
- Must be able to understand and analyse stationary AC-circuits using complex symbolic methodology
- Must be able to understand and use Laplace transformation to analyse of dynamic electrical circuits

Skills:
- Must be able to analyse static and quasistatic electrical and magnetic fields and their usage
- Must be able to apply electro physics to determine electrical resistance, capacitance and inductance
- Must be able to apply electro physics to calculation of mechanical forces produced by electrical and magnetic fields
- Must be able to analyse stationary conditions in circuits containing resistive, capacitive and inductive elements
- Must be able to analyse electrical circuits dynamic conditions
- Must be able to apply methods for analyse of frequency conditions (amplitude and phase characteristic)
- Must be able to apply complex symbolic methodology for calculating stationary AC-circuits
- Must be able to analyse current, voltage, energy and power conditions in AC-circuits
- Must have skills within Electro physics including
 - Electrical fields, Displacement, electrical field strength, permittivity, Coulombs law, dielectric polarisation, Electrical potential.
 - Energy in electrical fields, Gauss’ law, capacitance for simple geometries, electric flux, capacitors and capacitance
 - Magnetic fields, flux intensity and magnetic field strength, permeability, Biot-Savarts magnetic polarisation, Ampère’s
law and magnetic flux

- Inductance, magnetic forces on conducting conductors, torque on current loops in homogeny magnetic fields and magnetic forces between two parallel conductors, and coils
- The generalized form of Ampére’s law
- Faraday’s law, induced electromotive force, the electric generator
- Lenz’ law
- Maxwell’s equations
- Ferromagnetic materials, hysteresis, B-H curves, energy in magnetic fields, vortex losses

- Must have skills in elementary circuit theory including
 - Energy storing components (L and C), initial values (L(0) and C(0))
 - First order systems, solving circuit equations of first order, Universal method
 - Second order systems, damping and natural frequency (θ and ω), solving circuit equations of second order (over damped, under damped and critically damped)
 - Transfer functions and usage of Laplace transformation on electrical circuits
 - Frequency analysis and Bodepots (amplitude and phase characteristics)
 - Resonance circuits
 - Poles and zeroes analysis
 - Frequency analysis
 - Filter networks
 - Fourier analysis

- Must have skills in elementary AC-circuits theory including
 - The complex symbolic methodology for calculating AC-circuits (single phased)
 - Impedance and admittance principle for stationary circuits
 - Power in AC-circuits, immediate power, average power, RMS, active and reactive power, power factor
 - Phasordiagrams for calculating stationary AC-circuits
 - Mutual inductance, coupling factor, single phase transformer

Competencies:
- Shall be able to handle simple development oriented situations regarding electro physics and circuit technical problems in study- or work situations
- Shall independently be able to engage in disciplinary and interdisciplinary corporations with a professional approach within elementary electrical and physics theory and methods.
- Must be able to identify own learning needs and structure own learning within electro physics and dynamical electrical circuits

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral examination based on a written report

Evaluation criteria: According to the Faculty’s assessment criteria’s
Advanced Calculus
Videregående calculus

Semester: 3rd semester
Prerequisites: The module builds on knowledge from linear algebra and calculus
Purpose: The dynamical behaviour of systems is typically described by differential equations. This course supports the semester theme by providing mathematical tools for analysing such systems in detail.
Objectives: Students who complete the module:

Knowledge:
- Must have knowledge of important results within vector analysis in 2 and 3 dimensions
- Shall be able to understand Laplace transformation and use it to solve differential equations.
- Must have knowledge of complex analytic functions
- Must have an understanding of power series and Taylor series
- Must have knowledge of Laurent series and the method of residues integration

Skills
- Must be able to use vector analysis, including inner product, vector product, vector functions, scalar functions and fields, as well as elements of vector differential and integral calculus
- Must have understanding of Fourier series, including concepts such as trigonometric series, periodic functions, even and odd functions, complex Fourier series and forced oscillations resulting from non-sinusoidal input
- Shall be able to understand and utilize the Laplace transform for analysis of differential equations; specific subjects include:
 - The definition of the Laplace transforms.
 - Inverse transformation.
 - Linearity and s-shift.
 - Transformation of common functions, including regular, impulse and step functions.
 - Transformation of derivatives and integrals.
 - Solving Differential Equations
 - Folding and integral equations
 - Differentiation and integration of transformed systems of ordinary differential equations
 - Using Tables
- Shall be able to use complex analytical functions within the contexts of conformal mappings and complex integrals; specific subjects include:
 - Complex numbers and complex plane
 - Polar form of complex numbers
 - Exponential, trigonometric and hyperbolic functions
 - Logarithmic functions and general power functions
 - Complex Integration: Line integrals in the complex plane
 - The Cauchy integral theorem
Competencies

- Shall demonstrate development of his/her knowledge of, understanding of, and ability to make use of, mathematical theories and methods within relevant technical fields
- Shall be able to identify their own learning requirements and structure their own learning within the context of fundamental mathematics.

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Micro Processors & Programming
Mikroprocessorer og programmering

Semester: 3rd semester
Prerequisites: The module builds on knowledge from imperative programming; digital design and sensors

Purpose: Most mechatronic systems include dedicated computers that handle the "intelligent" tasks of guidance, monitoring and control. Typically, such a dedicated computer is connected to/equipped with sensors that allow it to measure important information about current system status and (in some cases) its surroundings. Using these measurements, the dedicated computer executes various algorithms that enable it to determine how to operate the mechatronic system's actuators in response to the immediate situation. Building on the knowledge gained in the 2nd semester, this course aims to provide the students with theories and methods that enable them to design and implement programs for such dedicated computers and use them in a practical system context.

Objectives: Students who complete the module:

Knowledge:
- Shall have understanding of basic real-time aspects of single-processor system operation, including clock frequency, sampling rate, algorithm processing time etc., as well as how these aspects affect each other
- Must have insight into common micro-processor architecture elements, such as RAM, ALU, registers, buses, etc., as well as how these components interact
- Shall have insight into number representation on digital computers
- Must have basic insight into simple digital filtering functionality
- Must be able to use relevant tools to find a digital implementation of a continuous-time differential equation

Skills:
- Must be able to design algorithms for a chosen micro-processor that satisfy specified timing constraints
- Must be able to use a relevant programming language, along with relevant compilers and linkers, to implement and test said algorithms on said micro-processor
- Must be able to design and implement relevant circuitry to enable a micro-processor to become an integrated part of a mechatronic system

Competencies:
- Are able to design and implement simple, micro-processor-based systems that can be integrated in mechatronic systems and handle fundamental monitoring and control tasks.

Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral or written examination.
Evaluation criteria: According to the Faculty’s assessment criteria’s
Control Engineering
Regulering

Semester: 4th semester
Purpose: Students shall understand fundamental principles of regulation systems as well as real time issues within this kind of systems. Students shall be able to develop a physical regulation system using the classical control techniques and implement the developed digital controller using the programming skills. In order to provide effective control solutions, the students are required to make models of the systems as well as consider the effects of feedback (the control) and noise (the disturbances) in a more rigorous manner than before.

Objectives: Students who complete the module:

Knowledge:
- Must have insight of transfer functions described via the Laplace formulation, including feature analysis, such as poles, zeros, and analog/digital implementation
- Must have an understanding of state space description of modern control systems, including the feature analysis, such as controllability, observability and eigen-structures etc.
- Shall have the insight of different modelling techniques, including the first-principle and experimental approaches
- Must be able to linearize non-linear system models in order to approximate them by linear models
- Must have insight into real-time aspects in relation to digital systems communicating with other analog and/or digital systems
- Must have an understanding of basic power electronics and typical electrical machines, such as different types of motors and generators

Skills:
- Must be able to analyse and select methods for modelling of physical systems, including electric, electro-mechanical, thermal and fluid dynamical systems, at a level where the resulting models can be utilized in a control system design
- Must be able to apply selected theoretical and/or experimental modeling techniques for modeling dynamic systems and simulating them
- Must be able to analyse the open-loop and closed-loop system features and specify system performances, both in transfer function and state space descriptions
- Must be able to apply both classical (frequency-domain) and modern (state space) control techniques for analysis and design of a control system based on a given specification
- Must be able to convert the developed controller into a digital version in order to implement it in a digital programmable device, for example, in a specific micro-processor or PC based manner

Competencies:
- Must be able to apply different modelling techniques to illustrate dynamic system’s features and performance, with an orientation for control design purpose
- Must be able to simulate the obtained mathematical model by employing some simulation tools, such as Matlab/Simulink.
- Must be able to analyse, design and implement a control solution for a given specific regulation problem, by using both classical and modern control theories
- Must have insight of basic principles and analysis of power electronics and electrical machines, potentially some control issues of these devices and systems

Type of instruction: Project work with supervision
Exam format: Oral examination based on a written report
Evaluation criteria: According to the Faculty’s assessment criteria’s
Modelling and Simulations
Modellering og simulering

Semester: 4th semester
Prerequisites: Basic electrical engineering
Purpose: To enable students to apply some of theoretical and experimental modelling methods into their project and simulate the system by means of simulation tools, such as Matlab/Simulink

Objectives:

Knowledge:
- Must have knowledge of the modelling of some typical physical systems, such as mechatronic systems, flow dynamic systems, energy production/transportation/distribution systems, process systems etc., provision of operating conditions
- Must have insight into the theoretical modelling for dynamic systems, including the principles of mass balance, energy balance and momentum balance
- Must have the knowledge of experimental modelling of linear and non-linear dynamic systems, including the experiment design, data collection and pre-filtering, model structure selection, parameter estimation and model validation
- Must have insight of linearization techniques of nonlinear systems,
- Must be able to simulate the obtained mathematical model in some typical simulation environment, such as Matlab/Simulink

Skills:
- Shall be able to apply basic theoretical and experimental modelling techniques for modelling dynamic systems and simulating them
- Shall be able to model and analyse some typical dynamical systems, including electrical, mechanical, power and thermo dynamical systems etc.
- Must be able to develop models of dynamic systems in the form of block diagrams and be able to reformulate the equivalent diagrams
- Must be able to linearize a obtained nonlinear system and analyse the difference between the linearized and original systems
- Must be able to simulate the obtained mathematical model of concerned system and analyse the system features within a proper simulation environment

Competences:
- Be able to apply the theoretical modelling approach to model some typical physical systems, with an orientation for control design purpose
- Be able to correctly apply the experimental modelling approach for complicated systems, including the proper experiment design, data collation and analysis, selection of model structure and estimation of system parameters, as well as model validation
- Be able to apply Linearization techniques for nonlinear system analysis and simplification
Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Control Theory
Kontrolteori

Semester: 4th semester
Prerequisites: The module builds on knowledge from linear algebra, calculus and mathematics, basic electrical engineering

Purpose: To offer students with systematic and fundamental knowledge of feedback control theory, including the classical (transfer function based) and modern (state space based) control methods. After this course, students are able to formulate the control design problem; analyse the open & closed loop systems’ features and performances; commit a proper control design by following either classical or modern or both control design methods; implement the designed solution in a digital manner and verify the design through experiment.

Objectives: Students who complete the module:

Knowledge
- Must have insight of the transfer function description and state space description from a control development point of view
- Must have insight of the system’s characteristics with the correlation of system's dynamic and stationary behaviours, including the impact of system type and order, as well as poles and zeros and their influence on the system response
- Must have insight of typical classical control design methods, including the PID tuning, root locus method, and frequency design methods
- Must have an understanding of a system's frequency response characteristics, including open-loop and closed-loop perspectives
- Must be able to commit system’s stability analysis and determine the stability margins
- Must have an understanding of fundamental system property analysis based on state space description, i.e., controllability, observability, stability and robustness
- Must have insight into typical modern control design techniques, including full state feedback control, observer design, and observer-based feedback control
- Must have an understanding of basic optimal control methods, such as LQR control.
- Must have insight into implementation of developed controllers

Skills
- Shall be able to analyse the concerned system static and dynamic features based on both transfer function description and state space description
- Shall be able to commit a control problem formulation, analysis, design, implementation and validation based on a concerned regulation problem and system, by using both classical and
modern control design methods

- Shall be able to develop and tune a PID type of controller and analyse the consequence to the controlled system
- Shall be able to design a type of feedback controller based on the state space model, and analyse the influence to the open-loop and closed loop systems characteristics
- Shall be able to discuss and implement the developed controller in a correct and reliable digital manner

Competencies

- Must have gained the ability to translate academic knowledge and skills within the fields of basic modelling and control engineering to a practical problem, which can be formulated and solved
- Are able to design a control system, such that the system can be used to solve the problem formulated above
- Possesses the ability to design and implement algorithms for the concerned control problem.

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Power Electronics and Networks

Semester: 4th semester
Prerequisites: The module builds on knowledge from linear algebra, calculus and mathematics, basic electric circuits, AC-circuits and electro physics
Purpose: To offer students with basic knowledge about power electronics, such as transformers, inverters and converters etc., and fundamental knowledge about electrical machines. Network and data communication is essential part of most systems today so student learns the basics about networks & data communication.

Objectives: Students who complete the module:

Knowledge:
- Have knowledge of components in the area of Power Electronics including diodes, rectifiers, thyristor rectifiers, coils, transformers, capacitors, MOSFETs, bipolar transistors
- Have knowledge of fundamental converter theory including Buck, Boost, Buck-Boost and Forward converter in both Continuous Conduction Mode and Discontinuous Conduction Mode.
- Have knowledge of the principles of Pulse-Width Modulation
- Have knowledge of the transformer idle and load curve including determining parameters through experiments
- Have understanding of the principles and handling of systems characterized by numerous cooperating and communicating processes
- Have knowledge about the comprehension of principles and techniques of modern data network systems and their communications
- Have knowledge of basic embedded sensor networks

Skills:
- Must be able to apply stationary analysis for transformers and converters
- Must be able to choose the right components and converter topology for a given task
- Must be able to perform calculations of conduction losses, design criteria for choice of components
- Must be able to design and build a coil for a given task
- Must be able to understand OSI models and protocol concepts
- Must be able to understand Layer 1 and 2 including basic data-transmission, MAC, LLC, HDLC
- Must be able to understand network protocols and their programming, including IP, UDP, TCP, Sockets, and RPC.
- Must be able to use concepts from the OSI model, including the MAC, network, transport and application layers.
• Must be able to use TCP/IP protocol stack and be able to assess functions in the network, transport and application layers, including Quality of Service mechanisms.
• Must be able to understand and use network topologies for embedded sensor networks including SPI and I2C

Competencies:
• Must be able handle development orientated situations in relation to stationary conditions for converters
• Shall independently be able to engage in disciplinary and interdisciplinary corporations with a professional approach within converter design
• Shall be able to analyse describe/design a communication network for a given system.
• Shall be able to choose the right communication network topology for accessing various types of sensors for a given task

Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral examination based on a written report
Evaluation criteria: According to the Faculty’s assessment criteria’s
Semester: 5th semester

Purpose: This semester offers two themes: automation and real-time signal processing, students have the option to select any one of them. Through the automation theme student shall acquire fundamental knowledge of digital regulation systems as well as the real time issues within these kinds of systems. Students shall be able to develop a physical regulation system using the control techniques leaned from previous semester. They should be able to implement the developed digital controller using the real-time and embedded programming skills.

Objectives: Students completing this project module should have:

Knowledge:
- Must have insight of sampling mechanism and sampling theorem for an ADC implementation
- Must have insight of typical numerical computation methods, including the principles, features and limitations
- Must be able to simulate the concerned digital control solution in an efficient and reliable manner
- Must be able to convert a controller initially formulated in an analog form to its equivalent digital version and analyse the influence because of this discretization
- Must have insight of typical digital filter design techniques, including FIR and IIR filters
- Must have insight of discrete Fourier transform and its efficient digital computation algorithms, FFT
- Must be able to deal with real-time issues in a systematic manner when a digital controller is implemented

Skills:
- Must be able to determine a correct sampling frequency based on the system frequency feature analysis
- Must be able to commit a proper discretization of a controller which initially is in analog form
- Must be able to perform spectrum analysis of the signals
- Must be able to handle the real-time issues of digital implementation in a professional manner

Competencies:
- Must be able to analyse and design a digital system controller in a professional way
- Must be able to design typical frequency selective filters both as direct digital as well as in an indirect manner
- Must be able to perform the real-time analysis and programming of the designed digital controller
Type of instruction: Project work with supervision

Exam format: Oral examination based on a written report

Evaluation criteria: According to the Faculty’s assessment criteria’s
Digital Filtering

5th semester

Purpose: This semester offers two themes: automation and real-time signal processing, students has the option to select any one of them. The purpose of real-time signal processing is to offer students with fundamental knowledge of digital signal processing systems as well as the real time issues within this kind of systems. Students shall be able to develop a signal processing system using the knowledge leaned from this semester, and implement the developed solution using the real-time ad embedded programming skills.

Objectives: Students who complete the project module:

Knowledge:
- Must have insight of sampling mechanism and sampling theorem with proper ADC implementation
- Must have insight of typical numerical computation methods, including the principles, features and limitations
- Must be able to simulated the concerned digital signal processing solution in an efficient and reliable manner
- Must be able to convert an analog filter into its equivalent digital version, and analyse the influence due to this discretization
- Must have insight of typical digital filter design techniques, including FIR and IIR filter designs
- Must have insight of discrete Fourier transform and its efficient digital computation algorithms, named FFT
- Must have an understanding of different digital filter, e.g., DSP implementation
- Must be able to take care of the real-time issue in a systematic manner when a digital filter is implemented

Skills:
- Must be able to determine a correct sampling frequency based on system frequency feature analysis
- Must be able to commit a proper discretization of an analog filter
- Must be able to design frequency selective filters and analyse the system frequency features
- Must be able to commit digital signal spectrum analysis and analyse its results and limitations
- Must be able to cope with the real-time issue of digital implementation in an professional manner

Competencies:
- Must be able to analyse and design a digital implementation of a filter in an professional way
• Must be able to design typical frequency selective filters either in a direct digital way or indirect way, i.e., converting from analog one to its digital formulation
• Must be able to produce a signal’s digital spectrum and retrieve signal’s corresponding features
• Must be able to commit the real-time analysis and programming of the concerned digital filter

Type of instruction: Project work with supervision
Exam format: Oral examination based on a written report
Evaluation criteria: According to the Faculty’s assessment criteria’s
Numerical Methods
Numeriske metoder

Semester: 5th semester

Purpose: Not all mathematical and engineering problems are simple enough to solve analytically. The purpose of this course is to provide the students with tools and methodologies to approach those problems that cannot be solved with ‘pen and paper’, but requires numerical approximations.

Objectives: Students who complete the module:

Knowledge:
- Must have understanding of how to solve partial differential equations with analytic methods
- Must have understanding of different numerical methods
- Must have an understanding of finite difference, finite volume and finite element method

Skills:
- Shall be able to use analytical methods for solving partial differential equations, in particular the method of Separation of Variables and D’Alembert’s Principle.
- Shall be able to utilize numerical methods to solve mathematical problems, including:
 - Systems of linear equations, Gauss elimination, and factorization-based method.
 - Iterative solution of systems of linear equations, e.g., Gauss-Seidel.
 - Ill-conditioned systems of linear equations.
 - Matrix Eigen value problems.
 - Solving systems of non-linear equations.
 - Interpolation and splines.
 - Numerical solution of definite integrals.
 - Numerical solution of first- and second-order differential equations.
- Must be able to utilize finite difference methods for solution of partial differential equations, including:
 - Approximation by finite differences.
 - Elliptical equations.
 - Dirichlet and Neumann boundary value problems.
 - Parabolic equations.
 - Explicit and implicit method, the Theta-method.
 - Hyperbolic equations.
 - Relationship with finite volume methods.

Competencies:
- Shall demonstrate development of his/her knowledge of, understanding of, and ability to make use of, mathematical theories and methods related to solving technical problems using numerical methods.
• Shall be able to identify their own learning requirements and structure their own learning within the context of numerical mathematics.

Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Signal Processing

Signalbehandling

Semester: 5th semester

Prerequisites: The module builds on knowledge in mathematics, micro processors and programming, fundamental control theory and modelling

Purpose: To offer students with fundamental knowledge about analysis, design and implementation of digital systems, including digital controllers or filters.

Objectives: Students who complete the course:

Knowledge:

- Must have the knowledge of Z-transform and its application in analysis and design of digital signals and systems
- Must have knowledge about sampling theories and methods for processing of physical signals on a computer
- Must have knowledge about theories and methods for spectral estimation
- Must have knowledge about theories and methods for design of digital filters (IIR/FIR)
- Must be able to implement IIR filters using bilinear transforms and impulse invariant methods
- Must have an understanding of the limitations of taught theories and methods
- Must have knowledge about the interplay between analysis of signals in the time and frequency domains
- Must have knowledge about basic implementation structures and specific DSP implementation

Skills:

- Shall be able to utilize some software tools for analysis, design and simulation of digital signal processing systems
- Must be able to apply theories and methods for spectral estimation including DFT / FFT
- Must be able to demonstrate the correlation between frequency resolution, window functions and zero-padding
- Must be able to apply theories and methods for design of digital filters
- Must be able to design FIR filters using windowing methods
- Must be able to explain the relationship between the pole/zero plots and frequency responses of digital filters
- Must be able to implement filters in practice, making use of appropriate filter structures, quantization, and scaling.

Competencies:

- Shall be able to discuss fundamental theories and methods for analysis and processing of digital signals, using correct terminology
- Shall be able to assess opportunities and limitations in connection with practical application of taught theories and methods
Type of instruction: As described in the introduction to Chapter 3.

Exam format: Individual oral or written examination

Evaluation criteria: According to the Faculty’s assessment criteria’s
Real-time Embedded Systems

Indlejrede realtidssystemer

 Semester: 5th semester
Prerequisites: The module builds on knowledge in micro-processor and programing
Purpose: To give the students at an application level to construct a real time embedded system.
Objectives: To enable students at an application level to gain knowledge to make analysis, design and implementation of real time embedded systems.

Knowledge
- Must have knowledge and understanding real time embedded systems
- Must have knowledge of programming concepts and embedded programming
- Must have knowledge the software engineering practices in the embedded software development
- Must have knowledge of real time operating systems
- Must have knowledge of hardware and software co design for a real time embedded system
- Must have knowledge of processors for embedded systems
- Must have knowledge of scheduling and guaranties on deadlines

Skills
- Must be able to make analysis of real time including embedded systems
- Must be able to design and develop an embedded systems
- Must be able program and test a real time embedded system
- Must be able to understand and analyse various embedded systems
- Must be able to understand and analyse scheduling and guaranties on deadlines for embedded systems

Competencies
- Must be able to handle real time embedded systems and laboratory setups in study- or work-related contexts
- Must be able to independently engage in professional and interdisciplinary collaboration with a professional approach within the context of real time embedded systems
- Must be able to identify his/her own learning needs within the real time systems including the embedded systems and structure such learning accordingly.
Type of instruction: As described in the introduction to Chapter 3.
Exam format: Individual oral or written examination
Evaluation criteria: According to the Faculty’s assessment criteria’s
Internship for Bachelors of Engineering
Diplomingeniørpraktik

Extent: 30 ECTS (20 weeks)
Semester: 6th semester
Objectives: After the internship, students must

Knowledge

- have knowledge about a company’s organization and work from an engineering perspective
- be able to explain the relevant field of study subjects worked with during the internship, including theories and methods used and results obtained
- have ability to understand and explain the relationship between taught theories and practice

Skills

- assessing the theories and methods in relation to the theoretical and/or empirical principles and methods used in the study prior courses and project work.
- be able to analyze whether the profession has new professional needs to be/can be handled by the program
- be able to discuss the need for knowledge exchange between company and Aalborg University.

Competences

- be able to document placement in an internship report such that the fulfillment of the internship’s learning goals can be evaluated.
- have ability to analyze and reflect on the academic, professional and social outcomes of the internship.
- have ability to handle development-oriented situations in study or work contexts.

Type of instruction: The internship program runs on 6th semester.
The student is responsible for obtaining an internship. The host company is normally expected to pay salaries to the student. The Board of Studies appointed supervisor may in special cases assist with the provision of the necessary business contacts.
The university must approve the internship company, and an agreement between the student and the company must be made. The company points out a person (company coordinator), who will be the one the student refers to. Internship agreement sets out learning objectives, assignments, time of internship, work, company coordinator, supervisor, etc. (see current guidance from SICT) and signed by supervisor, student, coordinator and board of study before the internship begins
If the development of the host company necessitates significant changes to the approved internship agreement, the coordinator and study board
must approve this.

During the internship, student must keep a diary, a daily reporting on the
events that happen during the day, primarily on the work done.

The internship report must be prepared following the same general
guidelines, which have been applied in the preparation of project reports
on the program prior semester.

However, the internship report must include:

- Description of the company – including organization
- Description of the company’s work
- Overview of the work in which the student has been involved.
- Thorough documentation of at least one field of study relevant
 subjects that the student has worked with during the internship.
 The review covers – to the extent appropriate – problem analysis,
 theory, methods, models, solutions, implementation, test,
 conclusion, etc.
- Diary
- Analysis of the internship yield academically, professionally and
 socially
- Experience from the internship and possible, proposed changes in
 curriculum, procedures etc.
- Reflection on knowledge exchange between company and
 Aalborg University.

Treatment of the/those subjects must be at a level equivalent to 6th
Semester. Information on the responsibilities for respectively internship
coordinator, company, student, employer panel, example of internship
agreement etc. can be found in Supplement for Bachelor internship.

Exam format: Within 2 weeks after internship completion, internship report submitted.

The student must present and defend his internship report. The
presentation will have duration of approximately 15 minutes and the
subsequent examination can take up to approximately 60 minutes.

The internship is approved on the basis of:

- Internship report (content specified above)
- Statement from the company coordinator, documenting the
 student’s satisfactory performance
- Oral presentation and defense of the report and stay

Evaluation criteria: According to the Faculty’s assessment criteria’s
Bachelor Project
Bachelorprojekt

Extent: 25 ECTS
Semester: 7th semester
Purpose: Bachelor of Engineering’s 6th semester
Objectives: Students conducting the module:

Knowledge
- Must have development-based knowledge and understanding of the profession and the discipline’s practice and applied theories and methods.

Skills
- Must be able to apply the discipline’s methods and tools and master the skills associated with employment in the profession.
- Must be able to assess practical and theoretical issues and the reasons for and select the options.
- Must be able to present practical and professional issues and solutions to partners and user.

Competences
- Must be able to in an independent way to formulate the problem, implement, document and present a project involving a complex and development-oriented task of the chosen specialization.
- Must have the ability to translate academic knowledge and skills into relevant, practical problem solving at bachelor of engineering level.
- Must have the ability to provide robust time and work plans for own project.
- Must have an independent and professional approach to dialogue with the chosen specialization partners and professional stakeholders.
- Must be able identify own learning needs and develop own knowledge, skills and competencies in relation to the profession.

Type of instruction: Runs as a problem-based project-oriented work. The module will give students the opportunity to demonstrate knowledge, skills and competences at university level within the chosen specialization. The student formulates the problem to be treated, but the coordinator and supervisor must approve the problem formulation before the project begins. The topic of the project will often be based in one of the topics from the internship such that the student can gain from the experiences. The project can be carried in or cooperation with a company. The project may be of theoretical and/or experimental nature.
Exam format: Individual, oral evaluation based on the submitted project report with external examiner.

Evaluation criteria: According to the Faculty’s assessment criteria’s.
Statistics
Statistik

Extent: 5 ECTS
Semester: 7th semester
Purpose: The course will support the students in the learning of classical statistical analysis of measured data.

Objectives: Students conducting the module must have:

Knowledge

- Understanding of the classical methods of statistical analysis of quantitative and qualitative measurement data in connection with designed experiments, including:
 - Exploratory techniques for data analysis
 - Multi-variance analysis
 - Multiple regression analysis
 - Covariance analysis
 - Analysis of Latin squares

and

 - Logistic regression analysis
 - Item-response analysis
 - Contingency table analysis (including 2-sided and 3-sided tables and conditional independence)

In addition, knowledge of graphical models

Skills

- The student should be able to use a software package for analysis and interpretation of data related to specific trials.

Competences

- Can identify and calculate relevant and simple empirical frequency and association and to assess their statistical uncertainty.
- Can compile, analyze and verify a statistical model for describing data from a designed experiment
- Can on basis on scientific hypotheses formulate, test and evaluate hypothesis corresponding statistical validity.
- Can disseminates the results of a statistical analysis and discuss implications of the analysis predictions.

Type of instructions: Lectures with exercises
Exam format: Individual written or oral exam.

Evaluation criteria: According to the Faculty’s assessment criteria’s.
Chapter 4: Entry into Force, Interim Provisions and Revision

The curriculum is approved by the Dean of the Faculty of Engineering and Science and enters into forces as of 1 September 2017 for students starting 1st and 3rd semester September 2017.

Students who wish to complete their studies under the previous curriculum from 2014 must conclude their education by the winter examination period 2018 at the latest, since examinations under the previous curriculum are not offered after this time.

Chapter 5: Other Provisions

5.1 Rules concerning written work, including the Bachelor’s project
In the assessment of all written work, regardless of the language it is written in, weight is also given to the student's formulation and spelling ability, in addition to the academic content. Orthographic and grammatical correctness as well as stylistic proficiency are taken as a basis for the evaluation of language performance. Language performance must always be included as an independent dimension of the total evaluation. However, no examination can be assessed as ‘Pass’ on the basis of good language performance alone; similarly, an examination normally cannot be assessed as ‘Fail’ on the basis of poor language performance alone.

The Board of Studies can grant exemption from this in special cases (e.g., dyslexia or a native language other than Danish).

The Bachelor’s project must include a summary in a foreign language. If the project is written in a foreign language, the summary can be in Danish. The summary must be at least 1 page and not more than 2 pages (this is not included in any fixed minimum and maximum number of pages per student). The summary is included in the evaluation of the project as a whole.

5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another programme at a university in Denmark or abroad
In the individual case, the Board of Studies can approve successfully completed (passed) programme elements from other Master’s programmes in lieu of programme elements in this programme (credit transfer). The Board of Studies can also approve successfully completed (passed) programme elements from another Danish programme or a programme outside of Denmark at the same level in lieu of programme elements within this curriculum. Decisions on credit transfer are made by the Board of Studies based on an academic assessment. See the Framework Provisions for the rules on credit transfer.

5.3 Rules concerning the progress and completion of the Bachelor of Engineering programme
The student must have passed the first year of study in the programme before the end of the second year of study in order that the student can continue his/her Bachelor of Engineering programme.

In special cases, however, there may be exemption from the above if the student has been on a leave of absence. Leave is granted during first year of study only in the event of maternity, adoption, military service, UN service or where there are exceptional circumstances.

The Bachelor of Engineering programme must be completed no later than seven years after it was begun.
5.4 Rules for examinations
The rules for examinations are stated in the Examination Policies and Procedures published by the Faculty of Engineering and Science on their website.

5.5 Exemption
In exceptional circumstances, the Board of Studies study can grant exemption from those parts of the curriculum that are not stipulated by law or ministerial order. Exemption regarding an examination applies to the immediate examination.

5.6 Rules and requirements for the reading of texts in foreign languages and a statement of the foreign language knowledge this assumes
It is assumed that the student can read academic texts within the programme’s subject areas in modern Danish, Norwegian, Swedish and English and use reference works, etc., in other European languages.

5.7 Additional information
The current version of the curriculum is published on the Board of Studies’ website, including more detailed information about the programme, including exams.