Curriculum for the Bachelor’s Program in IT, Communication and New Media

Aalborg University
September 2018

Campus: Copenhagen
Preface:
Pursuant to Act 261 of March 18, 2015 on Universities (the University Act) with subsequent changes, the following curriculum for the Bachelor's program in IT, Communication and New Media is established. The program also follows the Joint Programme Regulations and the Examination Policies and Procedures for The Technical Faculty of IT and Design, The Faculty of Engineering and Science, and The Faculty of Medicine.

Study Board of Electronics and IT
Table of Contents

Chapter 1: Legal Basis of the Curriculum, etc. ...3
 1.1 Basis in ministerial orders...3
 1.2 Faculty affiliation ..3
 1.3 Study Board affiliation ...3

Chapter 2: Admission, Degree Designation, Program Duration and Competence Profile3
 2.1 Admission ...3
 2.2 Degree designation in Danish and English...3
 2.3 The program’s specification in ECTS credits ..3
 2.4 Competence profile on the diploma ...4
 2.5 Competence profile of the program: ...4

Chapter 3: Content and Organization of the Program ...4
 3.1 1st semester ..8
 3.2 2nd semester ..18
 3.3 3rd semester ...24
 3.4 4th semester ..29
 3.5 5th semester ...35
 3.6 6th semester ...42

Chapter 4: Entry into Force, Interim Provisions and Revision61

Chapter 5: Other Provisions ...61
 5.1 Rules concerning written work, including the Bachelor’s project61
 5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another program at a university in Denmark or abroad ...61
 5.3 Rules concerning the progress of the Bachelor’s program61
 5.4 Rules for examinations ..62
 5.5 Exemption ..62
 5.6 Rules and requirements for the reading of texts ...62
 5.7 Additional information ...62
Chapter 1: Legal Basis of the Curriculum, etc.

1.1 Basis in ministerial orders
The Bachelor’s program is organised in accordance with the Ministry of Higher Education and Science’s Ministerial Order no. 1328 of November 15, 2016 on Bachelor’s and Master’s Programs at Universities (the Ministerial Order of the Study Programs) with subsequent changes and Ministerial Order no. 1062 of June 30, 2016 on University Examinations (the Examination Order). Further reference is made to Ministerial Order no. 110 of January 30, 2017 (the Admission Order) and Ministerial Order no. 114 of February 3, 2015 (the Grading Scale Order) with subsequent changes.

1.2 Faculty affiliation
The Bachelor’s program falls under The Technical Faculty of IT and Design, Aalborg University.

1.3 Study Board affiliation
The Bachelor’s program falls under the Study Board of Electronics and IT at School of Information and Communication Technology.

1.4 Body of External Examiners
The Bachelor’s program falls under the Body of External Examiners for Engineers (electronic engineering).

Chapter 2: Admission, Degree Designation, Program Duration and Competence Profile

2.1 Admission
Admission to the Bachelor’s program in IT, Communication and New Media requires an upper secondary education.

According to the Admission Order, the program’s specific entry requirements are:

- English B or an acceptable IELTS
- Mathematics A
- Physics B

The University can stipulate requirements concerning conducting additional exams prior to the start of study.

2.2 Degree designation in Danish and English
The Bachelor’s program entitles the graduate to the designation Bachelor (BSc) i teknisk viden-skab (IT, kommunikations- og medieteknologi). The English designation is Bachelor of Science (BSc) in Engineering (IT, Communication and New Media).

2.3 The program's specification in ECTS credits
The Bachelor’s program is a 3-year, research-based, full-time study program. The program is set to 180 ECTS credits.
2.4 Competence profile on the diploma

The following will appear on the diploma:

A graduate of the Bachelor's program has competencies acquired through an educational program that has taken place in a research environment. A graduate of the Bachelor's program has fundamental knowledge of and insight into his/her subject's methods and scientific foundation. These properties qualify the graduate of the Bachelor's program for further education in a relevant Master's program as well as for employment on the basis of the educational program.

2.5 Competence profile of the program:

The graduate of the Bachelor's program:

Knowledge
- possess knowledge about theories, methodologies and practice in the areas of IT, communication and new media
- are able to understand and reflect on theories, methodologies and practice within these subject areas
- have knowledge in design and planning processes in relation to development of ICT applications

Skills
- are able to apply selected methodologies and tools within IT, communication and new media
- are able to analyse and evaluate theoretical and practical issues within IT, communication and new media in a broader socio-economic context
- are able to develop and implement ICT based services and applications using programming and system development skills
- are able to explain the reasons for and choose relevant solution models
- are able to communicate academic and technical issues and solution models to peers and non-specialists or collaboration partners and users from an interdisciplinary perspective

Competencies
- are able to handle complex and development-oriented situations in study or work contexts
- are able to solve problems using mathematical tools
- are able to combine technology, user, economy, and policy perspectives
- are able to independently participate in discipline-specific and interdisciplinary cooperation with a professional approach
- are able to identify their own learning needs and organize their own learning in different learning environments

Chapter 3: Content and Organization of the Program

The program is structured in modules and organised as a problem-based study. A module is a program element or a group of program elements, which aims to give students a set of profession-
al skills within a fixed time frame specified in ECTS credits, and concluding with one or more exam-
inations within specific exam periods. The examinations are defined in the curriculum.

All projects are to be conducted in English. The study board may, in some cases, exempt from this.

The program is based on a combination of academic, problem-oriented and interdisciplinary ap-
proaches and organised based on the following work and evaluation methods that combine skills
and reflection:

- lectures
- classroom instruction
- project work
- workshops
- exercises (individually and in groups)
- project work and exercises in labs
- teacher feedback
- reflection
- portfolio work

The BSc in IT, Communication and New Media is taught in English. All activities, including the
above stated, are carried out in English. All exercise work and deliverables, project-work (as well
as any documentation in connection to these) delivered by the student must be written in English
and all exams are carried out in English. In accordance with the current Joint Programme Regula-
tions, The Study Board of Electronics and IT may choose to exempt from this rule in extra-ordinary
cases, which in principle requires a well-documented application from the student and/or teacher.
Overview of the program:
All modules are assessed through individual grading according to the 7-point scale or Pass/Fail. All modules are assessed by external examination (external grading) or internal examination (internal grading or assessment by the supervisor only).

<table>
<thead>
<tr>
<th>Semester 1: IT systems in a market perspective</th>
<th>Semester 2: System development</th>
<th>Semester 3: Distributed systems and users</th>
<th>Semester 4: Communication and media technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Project/course</td>
<td>Module</td>
<td>ECTS</td>
</tr>
<tr>
<td>1st</td>
<td>C</td>
<td>Commencement of Studies Exam</td>
<td>-</td>
</tr>
<tr>
<td>1st</td>
<td>P</td>
<td>P0: Project in Conceptual Design of an ICT Application</td>
<td>5</td>
</tr>
<tr>
<td>1st</td>
<td>P</td>
<td>P1: Project in Object-oriented Programming</td>
<td>10</td>
</tr>
<tr>
<td>1st</td>
<td>C</td>
<td>Problem Based Learning in Science, Technology and Society</td>
<td>5</td>
</tr>
<tr>
<td>1st</td>
<td>C</td>
<td>Linear Algebra</td>
<td>5</td>
</tr>
<tr>
<td>1st</td>
<td>C</td>
<td>Object-oriented Programming 1</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>P</td>
<td>Project in System Development</td>
<td>10</td>
</tr>
<tr>
<td>2nd</td>
<td>C</td>
<td>Software Engineering</td>
<td>5</td>
</tr>
<tr>
<td>2nd</td>
<td>C</td>
<td>Object-oriented Programming 2</td>
<td>10</td>
</tr>
<tr>
<td>2nd</td>
<td>C</td>
<td>Discrete Mathematics</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>P</td>
<td>Project in Distributed Systems and Users</td>
<td>15</td>
</tr>
<tr>
<td>3rd</td>
<td>C</td>
<td>Distributed Systems</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>C</td>
<td>Digital signal processing</td>
<td>5</td>
</tr>
<tr>
<td>3rd</td>
<td>C</td>
<td>Interaction Design</td>
<td>5</td>
</tr>
<tr>
<td>4th</td>
<td>P</td>
<td>Project in Communications and Media Technologies</td>
<td>15</td>
</tr>
<tr>
<td>4th</td>
<td>C</td>
<td>Communication and Media Technologies</td>
<td>5</td>
</tr>
<tr>
<td>4th</td>
<td>C</td>
<td>Introduction to Economics</td>
<td>5</td>
</tr>
<tr>
<td>4th</td>
<td>C</td>
<td>Introduction to Probability and Applied Statistics</td>
<td>5</td>
</tr>
<tr>
<td>Semester</td>
<td>Project/ course</td>
<td>Module</td>
<td>ECTS</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5th</td>
<td>P</td>
<td>Project in Application Development and Security</td>
<td>15</td>
</tr>
<tr>
<td>5th</td>
<td>C</td>
<td>Network and Application Security</td>
<td>5</td>
</tr>
<tr>
<td>5th</td>
<td>C</td>
<td>Computer Networks and the Internet</td>
<td>5</td>
</tr>
<tr>
<td>5th</td>
<td>C</td>
<td>ICT in Organizations</td>
<td>5</td>
</tr>
</tbody>
</table>

Semester 6: IT, Communication and New Media

<table>
<thead>
<tr>
<th>Semester</th>
<th>Project/ course</th>
<th>Module</th>
<th>ECTS</th>
<th>Assessment</th>
<th>Exam</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th</td>
<td>P</td>
<td>BSc Project</td>
<td>20</td>
<td>7-point scale</td>
<td>External</td>
<td>Mandatory</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Internet of Things</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Technology and Society</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Business Law</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Artificial Intelligence Programming</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Audio Processing</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Design and Analysis of Experiments</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Physical Interface Design</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Ethnographically Informed Design</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Real-time Interfaces and Interactions</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>6th</td>
<td>C</td>
<td>Theory and Practice of Game Design and Development</td>
<td>5</td>
<td>7-point scale</td>
<td>Internal</td>
<td>Elective</td>
</tr>
<tr>
<td>SUM</td>
<td></td>
<td>Total</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On the 6th semester students must choose 2 of the elective courses.

Most courses introduce scientific methods, which are specific to the topic of the course. For instance, mathematical methods are introduced in the courses Linear Algebra and Calculus, methods for programming in Object-oriented Programming, etc. Scientific theory and scientific methods in general are included in the course Problem Based Learning in Science, Technology and Society. Moreover, the students develop their skills in this area in their project work, where they will apply scientific methods in practice and reflect on their applicability in the subsequent process evaluation.
3.1 1st semester

Title:
Commencement of Studies Exam (Studiestartsprøve)

Size:
The commencement of studies exam does not yield ECTS credits and will not appear on the diploma.

Objective:
The purpose of the commencement of studies exam is to ascertain whether students have actually commenced their studies. The students must participate in and pass the commencement of studies exam in order to continue on their studies. If the students do not participate in or pass the commencement of studies exam or re-exam, the students' enrollment at their studies will be terminated immediately after the re-exam.

The commencement of studies exam will be held within the first weeks of the semester.

Contents:
The commencement of studies exam is a written exam based on the instruction course and contains for instance general questions about the students' expectations and motivation for their choice of studies.

Re-exam:
There will be only one commencement of studies re-exam. If the students do not participate in or do not pass the commencement of studies exam or re-exam, the students' studies will be terminated before 1 October. The Study Board can grant exemption from the rules regarding the commencement of studies exam if there are unusual circumstances.

Examination format:
Written exam

Assessment:
Internal assessment. The students receive the assessment “Approved” or “Not approved” based on their answers to the written exam. The students receive the assessment “Approved” when the written exam is answered and handed in.

Appeal:
The students can complain about the commencement of studies exam to the University. The complaint must be submitted to the University within two weeks from the result of the commencement of studies exam is announced. If the University rejects the complaint, the decision may be appealed to the Danish Agency of Science and Higher Education, if the appeal concerns legal issues.
| Title: | P0: Project in Conceptual Design of an ICT Application
(P0: Projekt i konceptuelt design af en IKT-applikation) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives:</td>
<td></td>
</tr>
<tr>
<td>Students who complete the module:</td>
<td></td>
</tr>
<tr>
<td>Knowledge:</td>
<td></td>
</tr>
<tr>
<td>• Must have knowledge about typical work processes in a problem based project</td>
<td></td>
</tr>
<tr>
<td>• Must have knowledge about the basic principles in scientific work, e.g., academic honesty</td>
<td></td>
</tr>
<tr>
<td>• Must have knowledge of what the subject of IT, Communication and New Media includes</td>
<td></td>
</tr>
<tr>
<td>• Must have knowledge about the concept of user friendliness</td>
<td></td>
</tr>
<tr>
<td>• Must be able to understand the concept of problem based learning</td>
<td></td>
</tr>
<tr>
<td>Skills:</td>
<td></td>
</tr>
<tr>
<td>• Must be able to analyse individual as well as organisational learning processes</td>
<td></td>
</tr>
<tr>
<td>• Must be able to organise a short period (less than a month) of collaboration in-group and with supervisor</td>
<td></td>
</tr>
<tr>
<td>• Must be able to communicate the reflections and results of the problem based project work: orally, graphically and in writing</td>
<td></td>
</tr>
<tr>
<td>• Must be able to apply problem based learning in group work</td>
<td></td>
</tr>
<tr>
<td>• Must be able to perform a simple SWOT analysis</td>
<td></td>
</tr>
<tr>
<td>Competencies:</td>
<td></td>
</tr>
<tr>
<td>• Must be able to reflect upon the problem oriented and problem based learning approach taken throughout the study</td>
<td></td>
</tr>
<tr>
<td>• Must be able to document the results achieved during the project in a report</td>
<td></td>
</tr>
<tr>
<td>• Must be able to cooperate with other students during the project period and make a joint presentation of the results achieved in the project.</td>
<td></td>
</tr>
<tr>
<td>• Must be able to reflect upon different ways of presenting results achieved with the project in writing, orally, and graphically.</td>
<td></td>
</tr>
<tr>
<td>Students who complete P0 project unit will have gained their first experience in using the problem-based learning method. Furthermore, students will be introduced to the discipline of IT, communication and new media. The students will be required to present a general conceptual design of an ICT application. The concept must include a business model, considerations on user friendliness, a SWOT analysis and an actor analysis. An example of an ICT-based application suitable for the project is an e-shop selling goods or services via web portal or a mobile portal. Furthermore, the students will be required to prepare a written P0 process analysis.</td>
<td></td>
</tr>
<tr>
<td>Type of instruction:</td>
<td></td>
</tr>
<tr>
<td>Students will do their project work in groups. The groups will receive instruction and feedback from the teacher.</td>
<td></td>
</tr>
<tr>
<td>Exam format: Internal. Oral examination based on a written project report. Assessment: Pass/Fail.</td>
<td></td>
</tr>
<tr>
<td>Evaluation criteria: Are stated in the Joint Programme Regulations.</td>
<td></td>
</tr>
</tbody>
</table>
Title:
P1: Project in Object-oriented Programming
(P1: Projekt i objektorienteret programmering)

Recommended academic prerequisites:
The project builds on knowledge obtained in the P0 project module: Project in Conceptual design of an ICT application (Projekt i konceptuelt design af en IKT-applikation).

Objectives:
To provide the student with practical experience defining a project within the area of IT, communication and new media, which includes use of object-oriented programming, to implement the project by working in groups and to document the solution in a project report.

Students who complete the module:
Knowledge:
- Must have knowledge about IT, communication and new media technologies in order to identify relevant contextual perspectives of a given technology
- Must have knowledge about project management in a long-term problem based project (in this case 2-3 months)
- Must have knowledge of methodological consideration to describe the theoretical and empirical foundation of the project
- Must have knowledge about how an object oriented programming language can be used to solve a specific problem
- Must have knowledge about commonly occurring data structures and algorithms
- Must have knowledge about the implementation and use of commonly occurring data structures and abstract data types

Skills:
- Must be able to analyse individual as well as organisational learning processes by scientifically recognised concepts and methods
- Must be able to organise and manage a longer-term project considering group and supervisor collaboration
- Must be able to structure and communicate the reflections and results of the problem based project work; orally, graphically and in writing
- Must be able to identify and define a problem suitable for a project involving object-oriented programming
- Must be able to use an object-oriented programming language and associated class library to implement parts of programs and small programs in order to solve a specific problem
- Must be able to plan and perform systematic test of the programme applied
- Must be able to discuss/assess the quality of the solution in a wider context

Competencies:
- Must be able to take responsibility of one’s own learning during a longer-termed project period and be able to generalise the gained experiences
- Must have competencies in using object oriented programming in solving programming tasks, especially programming tasks related to communication and new media
- Must have competences in documentation and discussion of the wider market related implications of a real life application
<table>
<thead>
<tr>
<th>Type of instruction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will do their project work in groups. The groups will receive instruction and feedback from the teacher. Students have to prepare a written P1 process analysis. Students will get support to identify relevant contextual perspectives by consultancy, a group meeting, and commenting on papers and presentation at the status seminar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam format:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal. Oral examination based on a written project report. The assessment is performed in accordance with the 7-point scale.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are stated in the Joint Programme Regulations</td>
</tr>
</tbody>
</table>
Title: Problem Based Learning in Science, Technology and Society
(Problembaseret læring i videnskab, teknologi og samfund (PBL))

Objectives:
The students shall theoretically as well as practically understand how to plan and execute a scientific problem-based project with technological, social and humanistic relevance. This includes an understanding of how technological aspects and contextual circumstances can be identified and included in the development of a problem solution.

Students who complete the module:

Knowledge:
• Must have knowledge of basic learning theories
• Must have knowledge of project planning and managements techniques
• Must have knowledge of different approaches to problem-based learning (PBL), including the Aalborg model approach, where problems are related to social and/or humanistic contexts
• Must have understanding of different resources for analysis and assessment of problems and solutions related to IT, communication and new media technologies from scientific, technological, ethical and social perspectives
• Must apply methods for analysis and assessment of problem within the field of IT, communication and new media technologies, including market and stakeholder analysis, and technologies and services assessments

Skills:
• Must be able to apply basic principles related to planning and management of a problem-based project: basic study techniques, phases in a problem-oriented project, from initial problem to problem analysis and problem formulation, design and implementation
• Must be able to analyse and evaluate the organisation of the project group work and collaboration, especially regarding identification of strong and weak factors, and, based on this, suggest how group organisation and collaboration can be improved in future situations: team roles, group dynamics, communication within the group and externally, creativity, methods for analysis and documentation of learning processes
• Must be able to analyse group conflicts, causes and possible solutions
• Must be able to analyse and evaluate own contribution to study and learning, especially regarding identification of strong and weak factors, and, based on this, consider continuous course of events and their contributions to the learning processes, learning styles and the study
• Must be able to analyse methods used in the project from a scientific point of view: science theory, qualitative and quantitative approaches
• Must be able to apply fundamental key areas, concepts and methods for evaluation and development of technical solutions considering the technology in itself, and in relation to social contexts and human circumstances (holistically): technology assessment methods, contexts and communication, media sociology (e.g., life styles, consumption, sociological methods), different forms of user test, innovation and creativity

Competencies:
• Must be able to apply knowledge (application) and understanding regarding being part of a
team-based project work
- Must be able to understand and communicate project work (application)
- Must be able to analyse own learning processes
- Must be able to analyse and document learning processes within the group (analysis)
- Must be able to create optimal collaborative learning processes (application)
- Must be able to apply knowledge and understanding of science, technology and society (application); from a technological perspective (including competencies on applying different technology assessment methods), and from a holistic perspective (including competencies on life style, consumption, and technology development, different contexts and forms of communication, innovative and creative processes)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by the Study Board for Electronics and IT.

Exam format:
Internal. Written or oral examination. Assessment: Pass/Fail

Evaluation criteria:
Are stated in the Joint Programme Regulations
Title:
Linear Algebra
(Lineær algebra)

Objectives:
Linear algebra is a fundamental tool for virtually all engineering mathematics.

Students who complete the module:

Knowledge:
- Must have knowledge about definitions, results and techniques within the theory of systems of linear equations
- Must be able to demonstrate insight into linear transformations and their connection with matrices
- Must have obtained knowledge about the computer tool MATLAB and how it can be used to solve various problems in linear algebra
- Must have acquired knowledge of simple matrix operations
- Must know about invertible matrices and invertible linear mappings
- Must have knowledge of the vector space \(\mathbb{R}^n \) and various subspaces
- Must have knowledge of linear dependence and independence of vectors and the dimension and bases of subspace
- Must have knowledge of the determinant of matrices
- Must have knowledge of Eigen values and eigenvectors of matrices and their use
- Must have knowledge of projections and orthonormal bases
- Must have knowledge of first order differential equations, and on systems of linear differential equations

Skills:
- Must be able to apply theory and calculation techniques for systems of linear equations to determine solvability and to provide complete solutions and their structure
- Must be able to represent systems of linear equations using matrix equations, and vice versa
- Must be able to determine and apply the reduced Echelon form of a matrix
- Must be able to use elementary matrices for Gaussian elimination and inversion of matrices
- Must be able to determine linear dependence or linear independence of small sets of vectors
- Must be able to determine the dimension of and basis for small subspaces

Competencies:
- Must demonstrate development of his/her knowledge of, understanding of, and ability to make use of, mathematical theories and methods within relevant technical fields
- Given certain pre-conditions, must be able to make mathematical deductions and arguments based on concepts from linear algebra
<table>
<thead>
<tr>
<th>Type of instruction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam format:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal. Oral or written examination. The assessment is performed in accordance with the 7-point scale.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are stated in the Joint Programme Regulations.</td>
</tr>
</tbody>
</table>
Title: Object-oriented Programming 1
(Objektorienteret programmering 1)

Objectives:
To provide the student with a foundation for the systematic development of programs using object-oriented modelling and programming.

The student should acquire an understanding of basic concepts and mechanisms in an object-oriented programming language such that the student is able to use the language and associated class library to implement small programs.

Students who complete the module:

Knowledge:
- Must have knowledge about commonly occurring concepts and mechanisms in an object-oriented programming language
- Must have knowledge about commonly occurring data structures and algorithms
- Must have knowledge about the implementation and use of commonly occurring data structures and abstract data types

Skills:
- Must be able to use an object-oriented programming language and associated class library to implement parts of programs and small programs
- Must be able to plan and perform systematic test of small programs
- Must be able to discuss/assess the quality of a given program

Competencies:
- Must have competencies in using object-oriented programming in solving programming tasks, especially programming tasks related to communication and new media

Contents:
- Introduction to programs and machines
- Fundamental sequential programming
- Introduction to object-oriented programming
- Test and debugging
- Basic data structures and algorithms
- Introduction to software system documentation
- Development of simple graphical user interfaces

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Written or oral examination based upon mandatory assignments. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
3.2 2nd semester

Title:
P2: Project in System Development
(P2: Projekt i systemudvikling)

Recommended academic prerequisites:
The students should have competencies equivalent to those gained from the P0 og P1 modules. Furthermore, basic programming experience is recommended.

Objectives:
For students to develop key competences in how to use system development processes for development of software and IT, and to work with requirements specifications. Overall, the project balances around possibilities and limitations of communication networks and how these are incorporated in requirements specifications and actual system development.

Students who complete the project:

Knowledge:
- Must have knowledge about methods for planning and developing an IT product in order to identify, analyse and assess the contextual impacts and perspectives of a given technology
- Must have knowledge about how to design the interaction between a potential user and an IT product
- Must have knowledge about the most important concepts in iterative system developments such as for example UP
- Must have knowledge about central IT and software development models such as the Waterfall model, Agile development, the spiral lifecycle model, Extreme Programming, etc.
- Must have knowledge about development of requirement specifications as a basis for developing an IT project

Skills:
- Analyse and model individual as well as organisational learning processes based on experiences from P0 and P1
- Must be able to apply IT development models to an actual case
- Must be able to apply user interaction models as a basis for requirements specifications
- Must be able to apply advanced object-oriented system development
- Must be able to develop a requirement specification for a given IT product
- Must be able to link user requirements with the requirement specification for a given product using UML diagrams
- Must be able to evaluate an IT development project based on requirements
- Must be able to reflect on the construction and reconstruction of science and technology in a user and society perspective
- Must be able to relate the professional practice within the discipline to the needs of humans and different societies
- Must be able to analyse technical or natural scientific problems by use of social science methodology
- Must be able to assess the impacts on humans and society from the proposed solutions
<table>
<thead>
<tr>
<th>Competencies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Must have competencies in independently managing a longer termed project</td>
</tr>
<tr>
<td>• Have competencies in generalising the gained experiences with project management and put them into perspective of the future course of study</td>
</tr>
<tr>
<td>• Must have competencies in reflection on the ethical perspective of engineering and science and discussion of implications of a responsible professional practice</td>
</tr>
<tr>
<td>• Must have competencies in development of a requirements specification</td>
</tr>
<tr>
<td>• Must have competencies in elicitation of user requirements and to translate these into the requirement specification for a specific product</td>
</tr>
<tr>
<td>• Must have competencies in user interaction models</td>
</tr>
<tr>
<td>• Must have competencies in IT development (for example a mobile application) by use of the System Development Process</td>
</tr>
</tbody>
</table>

Type of instruction:
Students will do their project work in groups. The groups will receive instruction and feedback from the teacher. Students have to prepare a written P2 process analysis. Students will get support to identify relevant contextual perspectives by consultancy; a group meeting, and commenting on papers and presentation at the status seminar.

Exam format: External. Oral examination based on a written project report. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:

Software Engineering
(software engineering)

Recommended academic prerequisites:
The students should have basic programming experience.

Objectives:
To provide students with knowledge in different development methods for development of software. This involves understanding of process models (plan-driven as well as agile), analyses for requirements as well as software validation and evolution.

Students who complete the module:

Knowledge:
- Must understand about requirements engineering and specification
- Must know about different process models for software design and development
- Must understand the difference between a plan driven process model and an incrementable agile process model
- Must know the Waterfall model, the Spiral model, Extreme Programming and SCRUM, amongst others
- Must understand when to use which process model for a given project
- Must be able to link user requirements and technical requirements for a specific IT software
- Must be able to explain the interaction between a system and users
- Must be able to understand different methods for validation and testing

Skills:
- Must be able to identify and compare different use situations for a particular IT product
- Must be able to identify, analyse and compare different methodologies for elicitation of requirements
- Must be able to describe and use different techniques for requirements analysis and specification
- Must be able to use UML as part of the requirements analysis and specification development
- Must be able to define verifiable criteria for a software or parts of a software
- Must be able to evaluate and validate different software solutions
- Must be able to plan and perform evaluations of software or parts of the software
- Must be able to design and conclude on a requirement specification for a given application

Competences:
- Must be able to develop a requirement specification for particular software
- Must have competences in discussing and documenting different approaches to development of software competences
- Must have competences in carrying out the different phases of a software engineering process
- Must be able to evaluate the process of software engineering and the single elements in relation to the purpose of the software being developed
Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:

Object-oriented Programming 2
(Objekt-orienteret Programmering 2)

Recommended academic prerequisites:
The module adds to knowledge obtained in Object-oriented Programming 1.

Objectives:
- To provide the student with knowledge of important concepts in object-oriented analysis and design that can be used to build programming models
- To provide the student with skills to perform object-oriented implementation and testing of developed programming models in Java

Students who complete the module:

Knowledge:
- Must have knowledge about common architectures and design patterns
- Must understand complex programming issues such as: the concept of multithreaded programs, typical synchronisation problems and common solutions to these
- Must have knowledge about programming for portable devices in Java
- Must have knowledge of manual and automated software testing principles and methods

Skills:
- Must be able to implement modelled systems by using object-oriented principles
- Must be able to use common architectures and design patterns
- Must be able to implement and execute test-cases
- Must be able to perform complex programming such as data-serialisation and use the Java API classes to program “attractive” GUIs, including using custom dialog boxes
- Must be able to discuss and evaluate the design and quality of object-oriented programs

Competencies:
- Must have the competencies to apply object-oriented principles, programming, and testing in the context of IT, communication and new media services.

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Discrete Mathematics
(Diskret matematik)

Recommended academic prerequisites:
The module builds on knowledge obtained in Linear Algebra.

Objectives:
Students who complete the module:

Knowledge:
- Must understand set theory: sets, relations, functions, partial orderings, equivalence relations
- Must understand fundamental number theory: modular arithmetic, Euclidean algorithm, the Chinese remainder theorem, Fermat’s little theorem and prime factorisation
- Countability of the rational numbers
- Must understand recursive/iterative algorithms
- Must understand time complexity: asymptotic notation and Big-O notation
- Must know about logarithm and exponential functions with base 2
- Must know about combinatorics and the binomial formula
- Must know about recursive functions and recurrence relations
- Must know about proof techniques: weak and strong induction and proof by contradiction, contraposition and constructive
- Must understand logic: propositional logics and quantifiers
- Must understand graph theory: directed and undirected graphs, path, simple path and trees
- Graph algorithms: search in graphs and shortest path

Skills
- Must be able to construct proofs (using the proof techniques of the course) for results within the course
- Must be able for formulate in writing mathematical results related to the course

Competencies:
- Must have competencies in the use of concepts and techniques of discrete mathematics, including in connection with algorithms

Type of instruction:
The teaching in Discrete Mathematics is a combination of sessions with lectures, exercises, and mini-projects.

Exam format: Internal. Oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Project in Distributed Systems and Users
(Projekt i distribuerede systemer og brugere)

Objectives:
The purpose of this project module is to acquire knowledge, skills and competencies regarding the implementation and use of distributed information technology in a specific application based on identified user requirement.

Students who complete the project:

Knowledge:
- Must have knowledge about computer networks
- Must have knowledge about distributed information technology systems including protocol design and system architecture
- Must have knowledge about methodologies for elicitation of user requirements and user evaluations

Skills:
- Must be able to involve users in requirement specifications for user interfaces
- Must have basic skills in implementing network technologies and distributed information technology systems, including intranet and groupware
- Must be able to implement client-server based or a peer-to-peer based application

Competencies:
- Must demonstrate competences in performing analyses of user requirements for information and knowledge
- Must have competences in presenting user scenarios based on user needs
- Must have competences in choosing relevant computer networks and information technology systems meeting organisational needs for knowledge and information sharing
- Must have competences in development and implementation of a distributed system

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Written or oral examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
| **Title:** | Distributed Systems
(Distribuerede systemer) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended academic prerequisites:</td>
<td>The module builds on knowledge obtained in the 2nd semester.</td>
</tr>
<tr>
<td>Objectives:</td>
<td>To introduce the student to a number of different techniques used for development of distributed systems.</td>
</tr>
<tr>
<td>Students who complete the module:</td>
<td></td>
</tr>
</tbody>
</table>
| **Knowledge:** | Must have knowledge about architectures of distributed systems
Must have knowledge about application layer protocols
Must have knowledge about relevant client side web technologies
Must have knowledge about using Java Beans
Must have knowledge about simple client/server applications using Java RMI |
| **Skills:** | Must be able to use relevant architectures to design distributed systems
Must be able to design application layer protocols
Must be able to use relevant client side web technologies
Must be able to use Java Beans
Must be able to implement simple client/server applications using Java RMI |
| **Competencies:** | Must be able to apply distributed technologies in design development of IT applications |
| **Type of instruction:** | The lessons consist of theory combined with practical exercises and are closely related to the project course consisting in the development of a distributed system. |
| **Exam format:** | Internal. Written or oral examination based on assignments. The assessment is performed in accordance with the 7-point scale. |
| **Evaluation criteria:** | Are stated in the Joint Programme Regulations. |
Title:
Digital signal processing
(Digital signalprocessing)

Recommended academic prerequisites:
The module adds to knowledge obtained in Discrete Mathematics.

Objectives:
Students who complete the module:

Knowledge:
- Must have knowledge of basic signal sampling and its limitations
- Must be able to explain the concepts of aliasing
- Must have knowledge about linear time invariant systems including impulse response, difference equation, convolution, stability, and causality
- Must have knowledge of finite impulse response filters
- Must have knowledge about definition, basic properties and theorems regarding discrete Fourier transform
- Must be able to explain frequency domain spectra and relate them to their time domain representations.

Skills:
- Must be able to analyse digital signals and finite impulse response filters by using the methods of convolution, difference equation, impulse response and frequency domain response
- Must be able to design finite impulse response filters from a set of specifications using MATLAB functions
- Must be able to apply the design tools of MATLAB to calculate the filter coefficients
- Must be able to implement and test digital filters using MATLAB

Competencies:
- Must be able to solve signal processing related problems in a practical context
- Must be able to apply signal processing algorithms and analyse the results

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Individual oral examination based on a written mini-project report. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Interaction Design
(Interaktionsdesign)

Recommended academic prerequisites:
Students should have experience in Software Engineering.

Objectives:
• To provide students with competences in involving users in software design and development of user interfaces.
• To provide students insight into the process of interaction design
• To provide a foundation for students to understand the concept of user centric design and can relate this to software engineering in general.
• To obtain experience in prototyping as foundation for design

Students who complete the module:

Knowledge:
• Must be able to understand central concepts interaction design, user centric development, process models, GUI, usability, and user experience, amongst others
• Must know different techniques and methods for elicitation of user requirements hereunder creativity techniques
• Must be able to characterise different types of users and their needs
• Must have knowledge about how to involve users in a design process. This includes knowledge about design models such as participatory design
• Must have knowledge about prototyping as design approach
• Must have knowledge about different techniques of how to do usability test designs such as cognitive walkthroughs, heuristic evaluation, focus groups, questionnaires, field studies, etc.
• Must understand how to formulate different goals and evaluation criteria for interaction design of different interfaces

Skills:
• Must be able to identify different interaction design problems
• Must be able to perform user evaluation of a particular software, system or interface using specific user involving techniques
• Must be able to elicitate user requirements by involvement of users and application of techniques (such as “think-aloud” test, and interviews, amongst others)
• Must be able to reflect on the interaction design and decide on which users to involve in the process
• Must be able to demonstrate how a system or interface design has been made through use of conceptual models

Competencies:
• Must have competencies in evaluation of different user interfaces (GUIs) and interface styles
• Must have competencies in analysing different target/user types and understand the differences in involvement of various user segments and user groups for feedback on design
• Must have competencies in involvement of users for user requirement elicitation
• Must be able to apply an iterative method for interaction design
• Must be able to select and apply user-involving evaluation methods and techniques
<table>
<thead>
<tr>
<th>Type of instruction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam format:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal. Individual written or oral examination. The assessment is performed in accordance with the 7-point scale.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are stated in the Joint Programme Regulations.</td>
</tr>
</tbody>
</table>
Title:

Project in Communications and Media Technologies
(Projekt i kommunikations- og medieteknologier)

Recommended academic prerequisites:

The project adds to knowledge obtained in P0 and P1. The course Communication and Media Technologies constitutes an important prerequisite.

Objectives:

The purpose of this project is to give the students an understanding of the technologies behind ICTs and media technologies. The students must use the theories and methods learned from the course Communication and Media Technologies on a specific case within ICT and media technologies.

Students who complete the module:

Knowledge:

- Must have knowledge about the key technologies and standards for fixed, mobile and wireless networks
- Must have knowledge about the structure, architecture and topologies deployed in the communication networks
- Must have knowledge about the key technologies and standards for the major media technologies
- Must have knowledge about Quality of Service (QoS) parameters for different service classes in different networks

Skills:

- Must be able to discuss the advantages and disadvantages of different network types in relation to specific services and applications
- Must be able to identify the QoS parameters related to specific service classes and evaluate their role in design of communication and media networks infrastructures

Competencies:

- Must have competencies in applying project- and team-based learning to complete a team project, including preparation of problem definition, coherent analysis and writing of a technical report with clear formulation of results and conclusions, and with proper use of source references
- Must have competencies in assessing the usefulness of different media and communication technologies in relation to different services and applications
- Must have the competencies in deploying the knowledge, skills and competencies acquired in the course Communication and Media Technologies while developing this project

Type of instruction:

Students will do their project work in groups. The groups will receive instruction and feedback from the teacher. In this project, the groups choose either to implement a communication service or to analyse a concrete problem related to communication technologies.

Exam format:

External. Oral examination based on a written project report. The assessment is
performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Communication and Media Technologies
(Kommunikations- og medieteknologier)

Objectives:
The objective of this course is to give the students an understanding of the communication networks, technologies, architecture, topologies and standards, including the major technological components used in the communication networks. The aim is to have an understanding of the major parameters, which are decisive when constructing network infrastructures.

Students who complete the module:

Knowledge:
• Must have knowledge about the structure of a communication network, including the specific characteristics of communicative versus distributive networks
• Must have knowledge about different network topologies and architectures and their advantages and disadvantages in relation to specific applications
• Must have knowledge about the reference models used in communication networks, including the OSI and TCP/IP reference models
• Must have knowledge about different transmission media technologies
• Must have knowledge about different modulation technologies
• Must have knowledge about different multiplexing technologies
• Must have knowledge about radio propagation
• Must have knowledge about QoS parameters and services classes
• Must have knowledge about mobility issues in communication networks
• Must have knowledge about the main mobile and wireless communication standards
• Must have knowledge about the major media infrastructure technologies, including digital TV and radio

Skills:
• Must be able to specify the parameters influencing the coverage, capacity and QoS in communication networks
• Must be able to discuss mobility management within one network and between different networks
• Must be able to discuss the parameters affecting the development of mobile and wireless communication networks

Competencies:
• Must have competencies to combine the acquired knowledge and skills to develop a technical analysis related to a specific problem in communication networks

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Written or oral examination. The assessment is performed in accordance with the 7-point scale.
Evaluation criteria: Are stated in the Joint Programme Regulations.
Introduction to Economics

(Indledende økonomi)

Objectives:

The overall objective is to provide a basic understanding of key concepts in economic theory with emphasis on microeconomics.

Students who complete the module:

Knowledge
- Must have knowledge about the type of problems addressed by economic theory
- Must have knowledge about the market forces of supply and demand
- Must have knowledge about the different types of market structures
- Must have knowledge about the main cost concepts including short and long term aspects
- Must have knowledge about consumer and producer behaviour

Skills
- Must be able to apply economic theories and methodologies for analysing the markets for ICT services
- Must be able to apply a variety of economics concepts to both the business and individual decision making process
- Must be able to apply national account figures for a description of economic development
- Must be able to explain wage and price determination in an open economy
- Must be able to apply economics models to real world scenarios

Competencies
- Must have the competencies to discuss the changes in the ICT market
- Must have the competencies to discuss how differences in market structure affect price and output
- Must have the competencies to discuss the role of the competitive process
- Must be able to discuss the role of technical development in economic theory

Type of instruction:

Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format:

Internal. Internal individual oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria:

Are stated in the Joint Programme Regulations.
Title:
Introduction to Probability and Applied Statistics
(Introduktion til sandsynlighedsregning og anvendt statistik)*

Recommended academic prerequisites:
The module builds on knowledge obtained in Calculus and Linear Algebra as taught at 1st and 2nd semester.

Objectives:
To introduce the student to concepts and ideas within statistics and how statistics can be applied to problems relevant to engineers in “ITCOM”.

Students who complete the course module will obtain the following qualifications:

Knowledge:
- Must have knowledge about fundamental concepts in probability, including conditional probability and independence.
- Must have knowledge about discrete and continuous random variables and relevant properties of these.
- Must have knowledge about various examples of descriptive statistics, e.g. histograms and scatterplots.
- Must have knowledge about statistical inference, including estimation, confidence intervals and hypothesis testing.
- Must have knowledge about important statistical models, like linear regression (simple and multiple), analysis of variance, logistic regression and log-linear models (in particular contingency tables).

Skills:
- Must be able to, given specific data, specify a relevant statistical model and account for the assumptions and limitations of the chosen model.
- Must be able to use relevant software for carrying out the statistical analysis of given data and be able to interpret the results of the analysis.

Competencies:
- Must be able to judge the applicability of statistics within own area.
- Must be capable of performing a critical judgement of the results of a statistical analysis.
- Must be capable of communicating the results of a statistical analysis to people with no or little background within statistics.

Type of instruction:
Lectures in combination with practical exercises and self-study or similar.

Exam format: Internal. Oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
3.5 5th semester

Title:
Project in Application Development and Security
(Project i applikationsudvikling og sikkerhed)

Recommended academic prerequisites:
The project builds on knowledge obtained in the projects included in 1st – 3rd semester.

Objectives:
To enable students to develop advanced secure applications and services based on state-of-the-art technologies and the knowledge and skills acquired during the previous semesters. The project should make use of solid skills in software engineering, network and media technologies, and analysis of user requirements in an organisation.

Students who complete the module:

Knowledge:
- Must have knowledge about computer networks and network protocols
- Must have knowledge of user interface design
- Must have knowledge about theories on knowledge sharing and knowledge management in an organisation
- Must have knowledge of security concepts

Skills:
- Must be able to understand information and communication needs in an organisation
- Must be able to develop applications using context information and media distribution
- Must be able to understand and overcome limitations of servers, networks and mobile terminals
- Must be able to make qualified decisions on client-server issues and choice of networks
- Must be able to include security elements in mobile and web-based applications, e.g., for mobile payment

Competencies:
- Must have competencies in identifying user needs in an organisation
- Must have competencies in combining a wide range of networks, technologies and devices in order to realise advanced and non-trivial applications and solutions
- Must have competencies in comparing and assessing the potential of different technologies, methods and approaches in order to make the proper design choices for optimum functionality

Type of instruction:
Students will do their project work in groups. The groups will receive instruction and feedback from the teacher.

Exam format: External. Oral examination based on a written project report. The assessment is performed in accordance with the 7-point scale.
Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:

Network and Application Security
(Netværks- og applikationssikkerhed)

Objectives:

Today any computer professional must have a basic knowledge about network security. This course will present a practical and theoretical survey of the basic concepts, principles and practice of cryptography and network security.

Students who complete the module:

Knowledge:
- Must be able to understand the basic concepts, principles and practice of cryptography and network security
- Must be able to understand professional articles and documentation concerning security issues
- Must have knowledge about where to get more information concerning security issues
- Must be able to understand the various threats, vulnerabilities and attack methods and the function and application of network components and applications used for countering threats
- Must be able to understand the various classes of cryptographic algorithms, explain their relative properties and the interplay of algorithms in network security applications and protocols
- Must be able to understand the methods for authentication of people, network traffic and systems in the covered protocols and applications
- Must be able to understand the typical content and best practices in a company’s security policy

Skills:
- Must be able to design, realise and document a security solution in a network
- Must be able to apply tools for analysing and generating network traffic to study security protocols and to test, verify and document the implemented solution
- Must have the ability to take security issues into account when developing IT-systems

Competencies:
- Must have competencies in implementing security systems based on current best practices

Contents:

Type of instruction:

Class teaching, lab exercises and one group project.
Approximately 60% of the time will be spent on lab exercises and the group project.
Exam format: Internal. Written or oral examination based on project. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:

Computer Networks and the Internet

(Computer-net og Internettet)

Recommended academic prerequisites:

Basic programming experience in one programming language (C, C++, Java, etc.)

Objectives:

To enable the student to analyse network architectures, define protocols and analyse network traffic using protocol analysers like Wireshark / Ethereal.

Students who complete the module:

Knowledge:

- Must be able to understand concepts like protocol, congestion and flow control, fragmentation, addressing forms, byte stuffing and multiplexing /de-multiplexing
- Must have knowledge about mainstream network components like routers, switches, hubs and their use
- Must have knowledge about services provided by the most important protocols and explain the relations among the services provided and the content of the protocol header

Skills:

- Must be able to use FSM-diagrams and latter diagrams to design a protocol
- Must be able to use protocol analysers like Wireshark / Ethereal to analyse network traffic
- Must be able to discus and evaluate the use of a) addressing forms, b) forward error correction versus error detection, c) stability of routing algorithms, d) explicit and implicit congestion control, e) available standards for local area networks (wired as wireless), f) implications on higher protocol layers of the NAT protocol, and g) IP4 versus IP6
- Must be able to implement, document and demonstrate a product that fulfils the requirement specification
- Must be able to identify, execute and document relevant tests for the developed product
- Must be able to demonstrate and document the ability to identify the major problem areas and the ability to carry out a systematic reduction into well-defined sub problems
- Must be able to identify and execute measurements and experiments for further reduction of uncertainties within the problem areas
- Must be able to create alternative models for the solutions. Select a particular solution based on a documented evaluation of the alternatives

Competencies:

- Must be able to use network principles and methods for design of protocols to analyse subjects related to computer networks
Contents:
Basic architecture: Computer Networks and the Internet
Application layer: HTTP, FTP, SMTP, POP3, DNS and socket programming.
Transport layer: TCP and UDP.
Network layer: IP, ICMP, NAT, Routing Algorithms and Routers.
Data Link Layer: Ethernet, Wireless LAN, Bridges, Switches and Hubs.

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Written or oral examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
ICT in Organizations
(IKT i organisationer)

Objectives:
The purpose of this module is for the students to develop a theoretical understanding and practical skills and competences concerning the implementation and use of information and communication technologies as a means in managing organisations and private companies.

Students who complete the module:

Knowledge:
- Must have knowledge about theories on organisations and communities
- Must have knowledge about theories regarding the management of distributed organisations and communities
- Must have knowledge about theories on knowledge sharing and management
- Must have knowledge about drivers and barriers concerning the implementation of information technology systems in organisations
- Must have knowledge about needs and use of ICT systems in different kinds of organisations
- Must have knowledge about basic e-business concepts

Skills:
- Must have skills in the use and application of different relevant information technology systems
- Must have basic skills in analysing organisational structures

Competencies:
- Must demonstrate competences in the identification and analysis of the organisational requirements for knowledge and information sharing
- Must have competences in describing and discussing the challenges in sharing information and knowledge via information technology systems
- Must have competences in choosing and describing knowledge and information for IT based system
- Must have acquired competences in choosing relevant technology systems
- Must have competences in applying the acquired knowledge and skills on specific company cases

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Exam format: Internal. Written or oral exam or mandatory assignments. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
3.6 6th semester

<table>
<thead>
<tr>
<th>Title:</th>
</tr>
</thead>
</table>
| **BSc Project**
(Bachelorprojekt) |

<table>
<thead>
<tr>
<th>Recommended academic prerequisites:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The module builds on knowledge obtained in the 1st - 5th semester.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To demonstrate the total acquired knowledge, skills and competencies as described for this bachelor study program (cf. chapter 2 and 3 of this document).</td>
</tr>
</tbody>
</table>

Students who complete the project:

Knowledge:
- Must have knowledge of how to design and develop a solution to an ICT related problem serving the needs of the end user

Skills:
- Must be able to identify organisational, market and legal implications of a given solution to a problem

Competencies:
- Must show command of the competencies acquired in the semesters 1-5

<table>
<thead>
<tr>
<th>Type of instruction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will work individually or in groups. The students will receive instruction and feedback from the teacher.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exam format:</th>
</tr>
</thead>
<tbody>
<tr>
<td>External. Assessment is based on a written report and oral presentation. If a project includes development of a prototype, this shall be demonstrated during the examination. The assessment is performed in accordance with the 7-point scale.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are stated in the Joint Programme Regulations.</td>
</tr>
</tbody>
</table>
Title: Internet of Things (Internet of Things)

Objectives:
Students who complete the module:

Knowledge
- Must have knowledge of sensor node technology
- Must have knowledge of hardware architectures for wireless sensor networks.
- Must have knowledge of operating systems for wireless sensor networks and their respective design issues
- Must have knowledge of IEEE 802.15 standard and communication technologies associated with it Low Energy Bluetooth, ZigBee, Z-wave, etc.
- Must have an understanding of short range communication standards like – Radio-frequency identification (RFID) and Near Field Communication (NFC)
- Must have detailed knowledge of protocols used in different layers, eg., Medium Access Control (MAC) protocols, routing protocols, transport control protocols
- Must have knowledge of Network management for Wireless Sensor Networks
- Must have knowledge of different security mechanisms used today for maintaining the confidentiality, integrity and authenticity of the data, sensor nodes and the networks

Skills
- Must have skills to design sensor networks based on requirements
- Must be able to monitor and manage sensor data
- Must be able to identify vulnerabilities in the system
- Must be able to propose efficient techniques for routing and handling of data

Competencies
- Must be able to successfully combine hardware, embedded software, web services and create systems that are interactive and practical
- Must be able to apply the theories and tools for Internet of Thing (IoT) in specific application areas
- Must have competencies to set some design rules, protocols for IoT architecture

Type of instruction: Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format: Internal. Written or oral examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Technology and Society
(Teknologi og samfund)

Objectives:
The purpose of this module is for the students to acquire a basic theoretical understanding and empirical knowledge regarding the social conditions for technology development and the broader societal implications of technology implementation and use specifically with respect to communication and media technologies.

Students who complete the module:

Knowledge:
- Must have knowledge of theories concerning the drivers of technology development, technology innovation and technology paths
- Must have knowledge of theories concerning the relationship between technology, economy and policy developments
- Must have knowledge of theories concerning invention, innovation and diffusion
- Must have knowledge of theories regarding technological paradigms
- Must have knowledge of theories regarding the social construction of technologies and stakeholder analysis
- Must have knowledge of the history of technology development specifically in the field of transport and communication technologies

Skills:
- Must have skills in identifying the relationships between technology, economic and policy developments regarding specific technology developments
- Must have skills in performing a basic technology assessment analysis
- Must have skills in performing a stakeholder analysis

Competencies:
- Must demonstrate competences in identifying different theoretical approaches to the analysis of technology developments in a societal framework
- Must have competences in choosing and combining relevant theoretical frameworks for the analysis of technology developments at a micro and macro level
- Must have competences in differentiating between social conditions for technology developments and implications of technology development

Contents:
This module concerns the relationships between technology and societal developments primarily from a macro perspective. It provides the students with a historic and contemporary overview of technology developments in the information and communication technology area. It, furthermore, provides the students with theoretical approaches to understanding such technology developments.
Type of instruction: Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Notice: This elective course might not be offered if less than 10 students sign up.

<table>
<thead>
<tr>
<th>Exam format: Internal. Written or oral exam or mandatory assignments. The assessment is performed in accordance with the 7-point scale.</th>
</tr>
</thead>
</table>

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:

Business Law
(Forretningsjura)

Objectives:
To give the students an introduction to the Danish/ EU legal instruments and law relevant for the IT, communication and media industry and other businesses, so they can identify and deal with legal issues in a timely manner.

Students who complete the module:

Knowledge:
- Must have insight at overview level in selected Danish/ EU laws
- Must have basic knowledge about the legal aspects of setting up a business or a public limited liability company in Denmark
- Must have basic knowledge about the relation between Danish and EU law
- Must have knowledge about commercial law, company law, and the sale of goods act
- Must have knowledge about public procurement law and marketing law
- Must have knowledge about IT contract and regulation of intellectual property rights (IPR)

Skills:
- Must be able to present basic legal problems related to the laws above
- Must be able to present relevant contractual documents in company including employee contracts and contracts between business partners
- Must be able to understand public procurement procedures

Competencies:
- Must be able to identify the relevant legal aspects related to development and market introduction of a given communication, media and information technology and other businesses

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format: Internal. Written or oral examination based on a synopsis. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Artificial Intelligence Programming
(Programmering af kunstig intelligens)

Objectives:
Concepts of artificial intelligence (AI) are central to the design and development of contemporary systems, e.g., database search and management, handheld devices (e.g., smartphones and tablets), games (e.g., chess), various adapting or learning systems, and so on. The objective of this course is to give students exposure to and an understanding of the fundamentals of AI programming, including: rational agents and their environment, knowledge representation, formal languages and logic, reasoning, basic graph theory, pathfinding algorithms, finite state automata, steering behaviors, and decision making. Students will develop practical skills in AI programming useful for the development and deployment of intelligent systems.

Students who complete the course module will obtain the following qualifications:

Knowledge
- Understand different levels of intelligent agent architectures, environments, and their application domains
- Understand basic graph theory
- Understand finite state machines, decision trees, and behaviour trees, and their implementation
- Understand different search strategies, and their implementation and underlying data-structures
- Understand different pathfinding algorithms and their implementation
- Understand steering algorithms and their implementation
- Understand classical planning approaches
- Understand knowledge representation, formal logic, and reasoning
- Understand basic fuzzy logic

Skills
- Apply the above knowledge to construct an intelligent system using available technologies
- Choose appropriate methods and technologies for a given problem (analysis)
- Interpret and evaluate AI systems and their behaviour
- Use agent simulation systems for prototyping system behaviour (apply)

Competencies
- Ability to synthesise knowledge, methodology or techniques concerning a problem centred around intelligent systems
- Ability to integrate AI-based libraries into larger projects (apply)
- Ability to learn the use of AI tools like agent-based simulators, planning systems, network simulators, etc. (apply)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided according to the current Joint Programme Regulations and directions are decided and given by The Study Board of Electronics and IT.

Notice: This elective course might not be offered if less than 10 students sign up.
Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:
To be eligible to take the exam the student must have fulfilled:
- handing in of written assignments or the like
- completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.
Internal. Individual oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria: Are stated in the Joint Programme Regulations.
Title:
Audio Processing
(Lydbehandling)

Recommended academic prerequisites:
Human Senses and Perception¹, Programming of Complex Software Systems¹, Mathematics for Multimedia Applications¹ or similar.

Objectives:
The objective of this course is to give the students an introduction to audio processing, including a basic understanding of audio and music signals, how these are generated and what their properties are. The course takes its starting point in the physics of sound and how audio signals are measured using computers by sampling and quantisation. The course then covers how to manipulate audio signals using filters and audio effects, like chorus, flanger, phaser, reverb, and equaliser, and how to design and analyse such effects. Moreover, it covers how to synthesise sound and music signals using, for example, physical models. Finally, the course covers how to analyse audio signals using the Fourier transform and auto-correlation.

Students who complete the course module will obtain the following qualifications:

Knowledge
• **Apply** knowledge from auditory perception in working with sound
• **Knowledge** of the physics of sound
• **Knowledge** of how to measure physical properties of sound
• **Understand** sampling, aliasing, quantization and signal-to-noise ratio
• **Understand** the time and frequency domains
• **Understand** the properties of audio signals in the time and frequency domains
• **Understand** filters and filtering in the time domain and frequency domain
• **Understand** convolution, impulse responses and transfer functions
• **Understand** correlation
• **Understand** basic sound synthesis techniques
• **Understand** basic filter-based sound effects
• **Understand** aspects of audio processing in real-time and off-line

Skills
• Implement filters for processing digital audio (**application**)
• Quantitatively **analyse** audio signals using correlation and the Fourier transform
• Implement sound effects and sound synthesis techniques (**application**)
• Express and analyse filters as rational functions (**application**)
• Apply complex numbers, finite/infinite sums, and integrals to analyse signals and filters (**application**)

Competencies
• Students who complete this module will be able to build audio processing systems for interactive multimedia applications (**synthesis**)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Electronics and IT.

¹ See curriculum for [Bachelor’s Programme in Medialogy](https://example.com).
<table>
<thead>
<tr>
<th>Notice: This elective course might not be offered if less than 10 students sign up.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam format:</td>
</tr>
<tr>
<td>In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:</td>
</tr>
</tbody>
</table>

To be eligible to take the exam the student must have fulfilled:
- handing in of written assignments or the like
- completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.

Internal. Individual oral or written examination.

The assessment is performed in accordance with the 7-point grading scale.

<table>
<thead>
<tr>
<th>Evaluation criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are stated in the Joint Programme Regulations.</td>
</tr>
</tbody>
</table>
Recommended academic prerequisites: Interaction Design2, Mathematics for Multimedia Applications2, Human Senses and Perception2

Objectives: A crucial aspect of designing medialogy systems, tools or applications is the need to evaluate the work experimentally. The knowledge of how to properly design experiments to collect and evaluate data is essential to answer many of the problems within medialogy. Examples are testing which of two tracking algorithms is the most efficient; how users perform with different kinds of feedback; possible relationship between age and performance, etc.

Students who complete the course module will obtain the following qualifications:

Knowledge

- Must be able to understand the basic concepts of probability: sample space of all possible events; combinatorics; independent events; conditional probability; Bayes’ formula; binomial distribution, etc.
- Must display knowledge about basic statistic terminology and treatment of data: distributions (probability density function, cumulative distribution function, quantile function); measures of central tendency and variability; histogram; central limit theorem, significance, power, type I and II errors, etc.
- Must be able to understand advantages and disadvantages with different types of designs and studies (between-group and within-group designs; correlational studies; blind/double blind, complete/incomplete and balanced/unbalanced designs)
- Must be able to understand the difference between common experimental designs, e.g., single sample experiments, two sample experiments, and factorial/multifactorial experiments
- Must understand the basic experimental design principles of independence, randomization, replication, and blocking and how these can be applied in experiments.
- Must be able to relate frequency distributions to the concept of hypothesis testing (understanding)
- Must be able to understand possible ethical concerns for a study

Skills

- Must be able to design an experiment to measure changes in a dependent variable, identifying and efficiently controlling relevant independent variables (application)
- Must be able to properly inform and instruct persons participating in a study (application)
- Must be able to understand and select among the most common methods for statistical analysis and assessment of experimental data (e.g., t-test, analysis of variance, chi-square tests, binomial test, correlation, and simple linear and logistic regression)
- Must be able to understand the difference between parametric and non-parametric analysis methods
- Must be able to understand different measurement scales and discuss experiments in terms of reliability, bias and sensitivity
- Must be able to discuss own data in terms of assumptions for statistical testing (application)
- Must be able to use an existing statistical package to analyse and present experimental results
- Must be able to discuss and represent empirical data in different ways (describing text, numbers, formulas, graphs and figures) and shift between these according to the needs of research.

2 See curriculum for Bachelor’s Programme in Medialogy.
the situation and context (application)
- Must be able to read, understand and implement experimental and empirical work as described in relevant literature (application)

Competencies
- Students who complete this module will be able to systematically design quantitative, scientific experiments, taking into account relevant factors (application)
- Students who complete this module will be able to use a statistical software package to analyse experimental data (application)
- Students who complete this module will be able to document their experimental results, and to understand experimental results presented by others (application)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Media Technology.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:

To be eligible to take the exam the student must have fulfilled:
- handing in of written assignments or the like
- completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.
Internal. The exam format is individual assessment based on a written or oral exam. The assessment is performed with the 7-step grading scale.

Evaluation criteria:
Are stated in the Joint Programme Regulations.
Title:
Physical Interface Design
(Fysisk interfacedesign)

Recommended academic prerequisites:
Introduction to Programming\(^3\), Interaction Design\(^3\), Mathematics for Multimedia Applications\(^3\) or similar

Objectives:
Physical Interface Design is a course module where students learn about basic principles of electronics and how different sensors can be interfaced to a microcontroller to design novel forms of interactions between man and machines.

Students who complete the course module will obtain the following qualifications:

Knowledge
- Should be able to recall basic circuit theory concepts and rules, including resistance, voltage, current, Ohm’s law, and Kirchoff’s laws (knowledge)
- Should be able to describe basic analog (e.g., potentiometers, force sensitive resistors) and digital (e.g., push button, touch interface) sensing technologies (knowledge)
- Should be able to express how a micro-controller can be used for measuring/actuating analog and digital inputs/outputs by the use of sensors and output devices (e.g., displays, LEDs, and vibrators) (understanding)
- Should be able to recall that some functionalities can be implemented using both hardware and software (knowledge), and to discuss the pros and cons of either solution (understanding)
- Should be able to identify practical needs in electric circuits such as DC filtering and circuit protection (understanding)
- Should be able to describe basic amplification (e.g., OpAmp) and filtering (e.g., RC and RL) circuits (knowledge)
- Should be able to explain basic concepts such as sampling and scaling in context of real-time use of signals (understanding)

Skills
- Should be able to apply the taught skills and methods on physical interface design to develop a prototype/artifact, and to demonstrate its use (application)
- Should be able to formulate a linear system of equations for voltage, current and resistance relationships in an electric circuit, and to solve the system to find unknown currents, voltages, or resistances (application)
- Should be able to use an electronic circuit simulator (application)
- Should be able to sketch and interpret an electric circuit diagram (application)
- Should be able to program a microcontroller to make it read inputs from sensor circuits and produce output(s) to a user (e.g., vibration, light, and text) (application)
- Should be able to examine and verify basic electric circuit designs using, e.g., a multimeter, and to test if a build electric circuit has the desired functionalities (analysis)
- Should be able to apply basic interface design principles for realizing a physical interface for human-computer interaction in the context of use (application)
- Should be able to assess the artifact by applying taught evaluation method(s) (evaluation)

Competencies
- Should be able to summarize the whole design process of the artifact (synthesis)
- Should be able to use correct technical and theoretical terms in dissemination (application)

\(^3\) See curriculum for Bachelor’s Programme in Medialogy.
Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Media Technology.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:

To be eligible to take the exam the student must have fulfilled:
- handing in of written assignments or the like
- completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.
Internal. Individual oral or written examination. The assessment is performed in accordance with the 7-point grading scale.

Evaluation criteria:
Are stated in the Joint Programme Regulations
Objectives:
In this course, we consider the larger picture and the situated nature of where and how people act and interact with media technologies. We work with theories, methods and material developed in successful design companies such as IDEO and Frog Design, which continue to evolve. The students will work with multiple evaluation methods that they apply in a hands-on approach that they consider as part of their ongoing critical reflection to the design process. The course will give students a better understanding of how chosen approaches, conceptual frameworks and methods produce different kinds of possible analyses for both the development, use and improvement of media technologies. The students will understand and apply selected user-centered, contextual and situational theories which can include ethnographic, psychological and sociological approaches and methods when analysing the use of media technology. The course will cover some of the large ranges of responses (e.g., interaction, reaction, deliberation, active and passive engagement) users can make when consuming media technologies, and provide students with methodological and analytic tools to analyse these responses in a given context and to implement these tools in their future design work.

Students who complete the course module will obtain the following qualifications:

Knowledge
- Must have knowledge and understanding of empirical and critical research, including systematic quantitative and qualitative research data gathering, analysis and interpretation methods
- Must understand and apply interpretative paradigms to media development. This includes evaluation of those approaches that promote qualitative methodologies, such as ethnography, grounded theory, case studies, discourse analysis, narrative research, diary studies, cultural probes and video interaction analysis, as well as application of quantitative methods including, for example, logging of use, physiological capture, or statistical analysis
- Must understand that the theories and methodology adopted impact on the nature of evidence gathered in media related research (evaluation)
- Must have knowledge of psychological, statistical, ethnographic, or sociological approaches to the study of contextual behaviour and their relevance and implications to media development and design (understand)
- Must have knowledge and understanding how a variety of ethnographic methods including contextual data capture are useful for guidelines for testing and evaluation and iterative design (application) which can be implemented for user-oriented problems

Skills
- Must have ability to apply a range of qualitative methods (e.g., interviewing, contextual inquiry, etc.) to elicit user needs, preferences and capabilities and be able to analyse and explain the findings (understanding)
- Must have ability to apply a range of quantitative methods, which may include logging and analysis, statistical tests, correlation and cluster analysis to assess perception and user behaviour (understanding).
- Apply observational methods to situations as they happen in real time and evaluate data in relation to end-user groups
- Apply, analyse and evaluate social, situated and digital micro and macro acts in interactions
- Design (apply) guidelines and apply adequate theories and study designs, using advanced qualitative and quantitative methods for collection and analysis of data (analysis)
• Design (apply) guidelines and apply different observational methods, including video observations and exploration of user states (e.g., immersed, engaged, emotional, pleasant).
• Design (apply) solutions to design and situated context related problems (synthesis).

Competencies
• Plan, organise and implement a full cycle of design, evaluation and re-design for a real world problem (evaluation).
• Synthesise and apply knowledge and understanding gained in the course regarding the consequence of choosing a specific approach, method, conceptual framework and theory in relation to media technology and a specific research question or problem.
• Understand advantages, disadvantages, possibilities and limitations regarding the use of specific methods, for example, video card game, video Interaction analysis, discourse analysis, interviewing, questionnaires, storyboards, scenarios, and know statistical methods (e.g., tests, clustering, correlation analysis) or various psychological experimental paradigms (e.g., free categorisation) (analysis).
• Synthesise, understand and apply in situ observational strategies, for example, shadowing, participation, video-observation for user evaluation and analysis in a context of media technologies (application).

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Media Technology.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:

To be eligible to take the exam the student must have fulfilled:
• handing in of written assignments or the like
• completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.

Internal. Individual oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria:
Are stated in the Joint Programme Regulations.
Title: Real-time Interfaces and Interactions
(Realtids interfaces og interaktioner)

Objectives:
Real-time Interfaces and Interactions is a course module offering the students opportunities to investigate technologies addressing different modalities that are commonly associated with creation of integrated multimodal interactive systems. The course is built upon the previous five semesters to augment foundational knowledge, skills and competences needed to achieve integration of technologies and evaluation methods.

Students who complete the course module will obtain the following qualifications:

Knowledge
- **Understanding** of the state-of-the-art in the field of alternative input and output technologies for uni- and multimodal applications (application)
- **Understanding** of visualisation techniques such as virtual or augmented reality (application)
- **Understanding** of sound design methods and real-time audio processing techniques such as interactive auralisation and sonification (application)
- **Understanding** of the measurement and analysis of physiological data via sensors detecting signals present in the human body for techniques such as affective computing
- **Understanding** of haptic interfaces, theory and implementation of haptic feedback systems using vibrotactile stimulation
- **Understanding** adaptive systems which change behaviour according to user input within a session
- **Understanding** of iterative design processes as used in the design of real-time interfaces and multimodal interactive systems

Skills
- Ability to **synthesize** new interface components of responsive Human-Computer Interaction systems, and log data from users and/or their interactions for data analysis
- Ability to scientifically **analyse** and argue with theoretical and methodological justification to demonstrate understanding of related research/work in the current scientific discourse
- Ability to **apply** real-time sensor inputs in the design of an interactive media product
- Ability to **synthesize** and **apply** contextual understanding and knowledge related to human factors in the design of novel interfaces
- Ability to **apply** theories, techniques and methods for the design and implementation of systems which can adapt to human needs and level of expertise

Competencies
- Ability to **synthesize** knowledge and understanding regarding previous research and current trends concerning interactive media systems
- Ability to **apply** such knowledge, understanding and skills toward creation of new interfaces and interactive systems that function in real-time (low latency response)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Media Technology.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the
Study Board for Media Technology:

To be eligible to take the exam the student must have fulfilled:
- handing in of written assignments or the like
- completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.

Internal. Individual oral or written examination based on mandatory exercises and mini-project. The assessment is performed in accordance with the 7-point grading scale.

Evaluation criteria:
Are stated in the Joint Programme Regulations
Title:
Theory and Practice of Game Design and Development
(Teori og praksis af spildesign og -udvikling)

Recommended academic prerequisites:
5th semester

Objectives:
This course provides students with the foundational knowledge and practices in the design and development of games such as the social and economic context of gaming and game production, the game industry, formal and dramatic elements of games, system dynamics of games, iterative game design through playtesting, completeness and balance of games, and game technologies. It is a hands-on course in which the students are expected to create actual prototypes, evaluate and iteratively redesign them.

Students who complete the course module will obtain the following qualifications:

Knowledge
- Discuss the structure and formal elements of games – in particular players, objectives, procedures, rules, resources, conflict, boundaries and outcome – and dramatic elements of games – in particular challenge, play, premise, character, story, world building, and the dramatic arc (understanding)
- Review the context of games, game classifications and players (understanding)
- Explain game technologies including controllers, game engines (and their components such as render engines, audio engines, physics engines, etc.), and game development tools (understanding)
- Describe the game development pipeline from idea via iterative design and development to product launch (understanding)
- Describe the game industry and game entrepreneurship including platforms for distribution, independent developers, development studios, and publishers (understanding)

Skills
- Analyse and summarise (application) system dynamics of existing games
- Create, present, critique and revise original game ideas (evaluation)
- Iteratively produce (application) and evaluate key game features through playtesting of physical and/or digital prototypes
- Judge completeness and balance (evaluation) and evaluate player experience of games and/or game prototypes with established metrics
- Produce pitch materials including game demos and design documents (application)

Competencies
- Plan, organise and implement a game (pre)production (application)

Type of instruction:
Refer to the overview of instruction types listed in the start of chapter 3. The types of instruction for this course are decided in accordance with the Joint Programme Regulations and directions are decided and given by the Study Board for Media Technology.

Notice: This elective course might not be offered if less than 10 students sign up.

Exam format:
In accordance with the Joint Programme Regulations and directions on examination from the Study Board for Media Technology:

To be eligible to take the exam the student must have fulfilled:
• handing in of written assignments or the like
• completion of certain – or all – study activities

Note that if admittance to the exam or parts of the assessment is to be based on written work or exercises, a deadline is stipulated for when the work must be handed in.

Internal. Individual oral or written examination. The assessment is performed in accordance with the 7-point scale.

Evaluation criteria:
Are stated in the Joint Programme Regulations
Chapter 4: Entry into Force, Interim Provisions and Revision

The curriculum is approved by the Dean of The Technical Faculty of IT and Design and enters into force as of September 2018 for students commencing 1st, 3rd semester and 5th.

Students who wish to complete their studies under the previous curriculum must conclude their education by the summer examination period 2020 at the latest, since examinations under the previous curriculum are not offered after this time.

Chapter 5: Other Provisions

5.1 Rules concerning written work, including the Bachelor’s project

In the assessment of all written work, regardless of the language it is written in, weight is also given to the student's spelling and writing ability, in addition to the academic content. Orthographic and grammatical correctness as well as stylistic proficiency are taken as a basis for the evaluation of language performance. Language performance must always be included as an independent dimension of the total evaluation. However, no examination can be assessed as ‘Pass’ on the basis of good language performance alone; similarly, an examination normally cannot be assessed as ‘Fail’ on the basis of poor language performance alone.

The study board can grant exemption from this in special cases (e.g., dyslexia or a native language other than Danish).

The Bachelor’s project must include an English summary. If the project is written in English, the summary must be in Danish. The summary must be at least 1 page and not more than 2 pages (this is not included in any fixed minimum and maximum number of pages per student). The summary is included in the evaluation of the project as a whole.

5.2 Rules concerning credit transfer (merit), including the possibility for choice of modules that are part of another program at a university in Denmark or abroad

The study board can approve successfully completed (passed) program elements from other Bachelor’s programs in lieu of program elements in this program (credit transfer). The study board can also approve successfully completed (passed) program elements from another Danish program or a program outside of Denmark at the same level in lieu of program elements within this curriculum. Decisions on credit transfer are made by the study board based on an academic assessment. See the Joint Programme Regulations for the rules on credit transfer.

5.3 Rules concerning the progress of the Bachelor’s program

The student must participate in all first year examinations by the end of the first year of study in the Bachelor’s program, in order to be able to continue the program. The first year of study must be passed by the end of the second year of study, in order that the student can continue his/her Bachelor’s program.

In special cases, however, there may be exemption from the above.

4 Or another foreign language (French, Spanish or German) upon approval by the Board of Studies.
5 The Board of Studies can grant exemption from this.
5.4 Rules for examinations
The rules for examinations are stated in the Examination Policies and Procedures published by The Technical Faculty of IT and Design on their website.

5.5 Exemption
In exceptional circumstances, the study board can grant exemption from those parts of the curriculum that are not stipulated by law or ministerial order. Exemption regarding an examination applies to the immediate examination.

5.6 Rules and requirements for the reading of texts
At programs that are taught in Danish, it is assumed that the student can read academic texts in modern Danish, Norwegian, Swedish and English and use reference works, etc., in other European languages. At programs taught in English, it is assumed that the student can read academic text and use reference works, etc., in English.

5.7 Additional information
The current version of the curriculum is published on the study board’s website, including more detailed information about the program, including exams.